
Dynamic CustomOp Support

Link to dev List discussion
Feature Shepherd
Problem
UserExperience

Approach
Compiling Custom Operators
Dynamically Loading Operator Libraries
Calling Custom Operators

Architecture
Runtime Behavior
New MXNet APIs

These are new APIs that are added to MXNet C APIs
Python APIs

APIs for implementing Custom Operators
These are the new APIs that users will implement for their custom operators
API for registering operator and its functions:
Example Custom Operators

Link to dev List discussion

TBD

Feature Shepherd

TBD

Problem

Previously MXNet only supported Custom operators written in higher level langauges (ie. Python, Java/Scala, etc.) via the Custom Op interface: https://mxn
. This makes it complicated to add high performance routines et.incubator.apache.org/versions/master/tutorials/gluon/customop.html?highlight=customop

written in C++ and CUDA. One solution was the MobulaOp project: which enabled a seamless experience for loading https://github.com/wkcn/MobulaOP
these high performance C++ and CUDA routines built on-top of the Custom Op interface. This project was very successful and we propose to integrate the
concepts and design directly into MXNet in this project. But in this project we will implement a CustomOp and dynamic library loader into the MXNet
engine, enabling custom high performance ops to be leveraged from all language bindings and without the overhead of the engine using callbacks at
runtime.

UserExperience

Similar to the ideas presented in the proposal and the current user experience that provides, we want to provide a Bring Your Own Accelerator MobulaOp
similar user experience where its easy to load operator libraries dynamically at runtime. Similarly, one benefit to writing custom ops is that you do not need
to recompile MXNet. So we want to provide an easy to use build flow to compile custom operators into libraries without a TON of external dependencies.

However, we will aim to balance between "simplified build/limited dependencies" and "ease of writing custom operators". For example, many custom
operators may need to execute basic tensor operations like addition, dot, etc. and it would be redundant and complicated for custom op authors to have to
rewrite these core routines.

Lastly, we want custom operators to be first-class operators and have access to all the capabilities that internal MXNet operators do. One example is
enabling custom operators to leverage the MXNet resource manager for storage and memory.

Approach

Compiling Custom Operators

To support compiling custom operators, we need to construct a simple API/file-set that users will compile their custom operators with. The result of this
compilation will be a dynamic library (Linux: *.so, Windows: *.dll). We will need to provide unit tests that allow users to test their operator registration
outside of MXNet to ease debugging.

Just how operators are registered in MXNet with NNVM, we propose a similar lightweight approach that doesnt require compiling custom operators with
NNVM.

Dynamically Loading Operator Libraries

After a user compiles custom operator(s) into a library, we need to construct an API to

load user-specified libraries
register operators from each library in MXNet so that they can be called/executed

https://mxnet.incubator.apache.org/versions/master/tutorials/gluon/customop.html?highlight=customop
https://mxnet.incubator.apache.org/versions/master/tutorials/gluon/customop.html?highlight=customop
https://github.com/wkcn/MobulaOP
https://cwiki.apache.org/confluence/display/MXNET/Bring+your+own+Accelerator
https://github.com/wkcn/MobulaOP#how-to-use-it

Calling Custom Operators

After a library is loaded, users need to call their operators from their application. We'll register custom operators in the same ndarray and symbol
namespaces that regular operators use here to provide a similar user experience.

Architecture

The figure below shows the high-level architecture. The user will call the API to load their custom operator library. This will result in the mx.library.load
operators being discovered from the so/dll and re-registered into MXNet's NNVM registry. Then the user will call their operator directly just like they would
for any regular MXNet operator.

When building a customOp Library, users will write 4 functions for each operator: , , , and . These are Forward InferShape InferType ParseAttrs
similar to the standard functions required for current Backend C/C++/CUDA operators in MXNet. Similarly, they will register their op (ie. the 4 functions) in
the library. As shown above, this “local-registration” will be parsed by MXNet when loading the customOp library at runtime.

Runtime Behavior

Heres the overall runtime behavior for CustomOps. Its it is broken down into 2 parts: initial library load, and operator execution.

First, the user writes their custom op functions: Forward, InferShape, InferType, and ParseAttrs. Then they statically register the functions in their library
with . Next they compile and produce a shared library (so/dll). Then they start MXNet, and load their library. During the initial setup, the user REGISTER_OP
calls in their code to load their shared library. During the loading process, MXNet parses all of the operators that have been registered by mx.library.load
getting the number of ops registered with the function. Then it iteratively gets each op by calling the and analyzes it before re-_opRegSize _opRegGet
registering it inside MXNet's NNVM registry.

Later when a CustomOp operator is bound/executed the functions from the shared library are executed. During the bind step, the attributes for the operator
are analyzed by the customOp's function in the shared library. For type and shape inference, the respective functions are also called through parseAttrs
the and APIs. Lastly, when executing the forward pass, the function is called for the operator from the shared library.inferType inferShape Forward

New MXNet APIs

These are new APIs that are added to MXNet

C APIs

MXLoadLib - API to load libraries
Checks version number
Calls initialize on the library
Check that each operator defines required functions
Register each operator found

Python APIs

load - API to load libraries
Takes a path to the library
checks if the path exists and if points to file
calls C API to perform actual loadingMXLoadLib

APIs for implementing Custom Operators

These are the new APIs that users will implement for their custom operators

parseAttrs - takes a set of key/value pairs for attributes and gives users an opportunity to validate the attributes passed to their custom
operator.

int parseAttrs(std::map<std::string, std::string> attrs,
 int* num_in,
 int* num_out);

Inputs: the map of attributes passed to the operator from the user
Outputs: num_in, num_out - the number of input/output arrays required for this operator
returns 1 if success, or zero if failure

inferType - performs type inference for this operator
int inferType(std::map<std::string, std::string> attrs,
 std::vector<int> &intypes,
 std::vector<int> &outtypes);

Inputs: the map of attributes
Inputs/Outputs: intypes, outtypes - the list of input/output types that should be inferred. Values of of -1 should be defined by this operator
as a specific type
returns 1 if success, or zero if failure

inferShape - performs shape inference for this operator
int inferShape(std::map<std::string, std::string> attrs,
 std::vector<std::vector<unsigned int>> &inshapes,
 std::vector<std::vector<unsigned int>> &outshapes);

Inputs: the map of attributes
Inputs: inshapes - the shapes of the input arrays
Outputs: outshapes - the shapes of output arrays

forward - performs forward pass of this operator
int forward(std::map<std::string, std::string> attrs,
 std::vector<MXTensor> inputs,
 std::vector<MXTensor> outputs,
);OpResource res

Inputs: the map of attributes
Input data: inputs, input tensors
Output data: outputs, output tensors

API for registering operator and its functions:

REGISTER_OP - registers the operator in the library
REGISTER_OP(sam)
.setForward(myFCompute)
.setParseAttrs(parseAttrs)
.setInferType(inferType)
.setInferShape(inferShape);

REGISTER_OP - macro that defines an custom operator object with given name
setForward - sets the FCompute function
setParseAttrs - sets the parse attributes function
setInferType - sets the infer types function
setInferShape - sets the infer shapes function

Example Custom Operators

Examples of creating custom operators, building them into a library, and loading them at runtime to test them can be found here:

https://github.com/apache/incubator-mxnet/tree/master/example/extensions/lib_custom_op

The GEMM example contains two operators. The state-less operator shows a regular operator here:

https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/gemm_lib.cc#L169-L174

The example GEMM stateful operator is here:

https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/gemm_lib.cc#L220-L225

The example build command to build the GEMM operators into a library is here:

https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/Makefile#L21

https://github.com/apache/incubator-mxnet/tree/master/example/extensions/lib_custom_op
https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/gemm_lib.cc#L169-L174
https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/gemm_lib.cc#L220-L225
https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/Makefile#L21

The example python code to load the library and test the operator for both symbol and ndarray APIs is here:

https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/test_gemm.py

https://github.com/apache/incubator-mxnet/blob/master/example/extensions/lib_custom_op/test_gemm.py

	Dynamic CustomOp Support

