
RESTAPI
REST API

Current 
(RPC)

REST

GET /api/status GET api/sessions
(It might make sense for this to return only the current session, but in theory it would return all sessions that the current session is allowed to access, 
so for an administrator, it might return all open sessions. An individual session would be accessed at GET api/sessions/SESSIONID.)

POST /api/login
token=API_TO
KEN

POST api/sessions?token=API_TOKEN

GET /api/logout DELETE api/sessions/SESSIONID or
DELETE api/sessions?session=SESSIONID
(get SESSIONID from api/sessions)

GET /api
/get_msgs

GET api/users/USERID/messages
(get USERID from api/session)

GET /api
/wait_for_msgs

GET api/users/USERID/messages (long-poll?)

GET api/messages/MESSAGEID
Gets a particular message.

POST /api
/send_msg
message=mess
agebody
via=client
tags=tags
metadata=XML
_data
replyto=messag
e_id

POST api/messages?message=MESSAGE_BODY&via=CLIENT&tags=TAGS&metadata=XML&replyto=MESSAGEID

PUT api/messages/MESSAGEID (payload the same as POST)

DELETE api/messages/MESSAGEID

GET /api
/get_following

GET api/users/USERID/followees

GET /api
/get_followers

GET api/users/USERID/followers

POST /api
/follow
user=id_of_user 

POST api/users/USERID/followees/USERID2 or
POST api/users/USERID/followees?user=USERID2

POST /api
/unfollow
user=id_of_user 

DELETE api/users/USERID/followees/USERID2 or
DELETE api/users/USERID/followees?user=USERID2

GET /api
/all_users

GET api/users

GET /api
/get_tagcloud
numTags=optio
nal_no_of_tags

GET api/tags
(This doesn't really seem like an appropriate API method. It should really return all of the tags, or user-specific tags (GET api/tags/USERID) and let the 
front-end decide what to do with it.)

GET /api
/get_tracking

GET api/users/USERID/tracks

POST /api
/add_tracking
track=text

POST api/users/USERID/tracks?track=TEXT_TO_TRACK

POST /api
/remove_tracking

trackid=id_of_tr
acking_item

DELETE api/users/USERID/tracks/TRACKID

GET /api
/get_conversati
on
conversationid=
Conversation_i
d

GET api/conversations/CONVERSATIONID



GET /api
/get_actions

GET api/users/USERID/actions
(Actions probably don't make sense outside of the context of a specific user.)

POST /api
/add_action
name=name
test=trigger
action=action

POST api/users/USERID/actions?name=NAME&test=TEST&action=ACTION

POST /api
/enable_action
id=action_id
enabled=true|fal
se

PUT api/users/USERID/actions/ACTIONID?enabled=true|false
(This is actually a general outlet to update any attribute of an action, including whether or not it is enabled.)

POST /api
/delete_action
actionid=action
_id

DELETE api/users/USERID/actions/ACTIONID

One point to note is that most HTTP clients do not currently support the "PUT" or "DELETE" methods, so these have to be simulatedthrough POST 
methods with an extra parameter. I think that because of the close mapping to resource verbs, is worth using these methods inthe specification and 
defining the simulation method for the entire APIseparately.
The above is based on a rough object hierarchy as follows:

ESME API instance (api/)
Sessions (api/sessions)
Users (api/users)

Messages posted by a user (api/users/USERID/messages)
Users followed by a user (api/users/USERID/followees)
Users following a user (api/users/USERID/followers)
Trackers belonging to a user (api/users/USERID/tracks)
Actions belonging to a user (api/users/USERID/actions)

Messages (api/messages)
Tags (api/tags)
Conversations (api/conversations)

Each of these bullets represents a set of objects. The resource representing an individual object lives at api/objects/OBJECTID. For example, api/sessions
/SESSIONID. As much as is reasonable, one would expect to be able to GET (read), POST (create), PUT (update/amend), or DELETE (delete) any 
individual member of each of these object sets. Going through each of these objects to ask what it would mean to create, read, update, or delete that 
object may reveal holes in the existing API, some of which I have filled in above.


	RESTAPI

