
CountLinks
CountLinks is a job that simply counts the outbound links on a page. If you are not familiar with please read about it on the MapReduce MapReduce
Hadoop site.

This tutorial will show how to create a task, configure a job to run it and how to feed data in and get data out. The task is simple to keep extra MapReduce
code to a minimum.

Create the Mapper

The mapper recieves the initial data and performs some operation on it. The map method that you supply get called by the framework. The first value is
the key that we will use to identify the results associated with this document. If multiple map operations have the same key they will be combined and sent
to the reducer. The second is the value. In our case the value is actually a so we will cast it to get access to it. is supplied bt the ParseData OutputCollector
framework and you want to write the results of your map implementation as a key/value pair using .collect(). Don't worry about the Reporter OutputCollector
for now.

How do I know what will be passed to the map function? This map function processes data from the parse_data directory of a nutch segment. You will see
later how we set this up but for now I know that the parse_data is a that has the format of (Url,ParseData) as a key/value pair. The key (Url) SequenceFile
is a Hadoop Text object. Each of these pairs will be passed to the map function. Depending upon what data you need to process you may need to
examine the Nutch code to determine the format of the data.

{{{ public static class extends implements MapperCounterMapper MapReduceBase
{
public void map(WritableComparable key, Writable value, collector, Reporter reporter) throws IOException {OutputCollector
// TODO Auto-generated method stub

 data = (ParseData)value;ParseData

 outboundLinkCount = new (data.getOutlinks().length);IntWritable IntWritable

collector.collect(key, outboundLinkCount);
}

public void close() throws IOException {
// TODO Auto-generated method stub
super.close();
}

public void configure(JobConf arg0) {
// TODO Auto-generated method stub
super.configure(arg0);
}

}
}}}

Create the Reducer

Our reducer does very little. We already know that the iterator will hold 1 item, which is an that we created in the map function. To see a IntWritable
reducer that combines multiple items checkout the example in Hadoop source code. We simply write the data back to the Output collector.WordCount

 public static class CounterReducer extends MapReduceBase implements Reducer
 {

 public void reduce(WritableComparable url, Iterator iterator, OutputCollector output, Reporter
reporter) throws IOException {
 IntWritable linkCount = (IntWritable)iterator.next();
 output.collect(url, linkCount);
 }

 public void close() throws IOException {
 // TODO Auto-generated method stub
 super.close();
 }

 public void configure(JobConf arg0) {
 // TODO Auto-generated method stub
 super.configure(arg0);
 }

 }

https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
#
#
#
#
#
#
#
#
#
#
#
#

Configure the job to run

So the last thing that we need to do is setup the job to run. The program is called with the parameters input directory and output directory respectively. The
input directory is a specific segment. To process more data you would need to enumerate your segments and add them as paths for . That is MapReduce
beyond the scope of this tutorial.

First we get the configuration for Nutch. Then we perform basic job setup. We set the input and out file formats. We set the format for the output key/value
pair. Then we set the Classes that we created so that can call them. Finally we pass the input and output directories and start the job.MapReduce

 public static void main(String[] args) throws IOException{
 Configuration config = NutchConfiguration.create();

 JobConf jobConfig = new NutchJob(config);
 jobConfig.setJobName("countlinks");

 jobConfig.setInputFormat(SequenceFileInputFormat.class);

 jobConfig.setOutputFormat(MapFileOutputFormat.class);

 // the keys are words (strings)
 jobConfig.setOutputKeyClass(Text.class);
 // the values are counts (ints)
 jobConfig.setOutputValueClass(IntWritable.class);

 jobConfig.setMapperClass(CounterMapper.class);
 jobConfig.setCombinerClass(CounterReducer.class);
 jobConfig.setReducerClass(CounterReducer.class);

 jobConfig.setInputPath(new Path((String) args[0], ParseData.DIR_NAME));
 jobConfig.setOutputPath(new Path((String) args[1]));

 JobClient.runJob(jobConfig);
 }

TutorialOneCompleteSourceListing

https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
https://cwiki.apache.org/confluence/display/NUTCH/TutorialOneCompleteSourceListing

	CountLinks

