
1.

1.

DistributedWebDB
More About WebDB

Michael Cafarella February 15, 2004

This is the second of two documents that describe the Nutch WebDB. Part one covered the single-processor WebDB; we now turn to the distributed
version.

We would like the distributed WebDB to be updated across multiple disks and machines simultaneously. The completed WebDB can exist across many
disks, but we assume a single machine can mount and read all of them. The distributed WebDB exists so we can distribute the burdens of update over
many machines.

The machines in a distributed WebDBWriter installation are connected either by NFS or by ssh/scp access to one another. (Our NFS implementation is a
little more advanced right now.)

The distributed WebDBReader just loads in files from multiple locations. We aren't too worried about distributed reading; it can be implemented by
WebDBReader clients instead of in the db itself.

Multiple WebDBWriter processes will each receive separate, possibly overlapping, sets of WebDBWriter API calls to apply to the db. It's OK for the WebDB
to know in advance how many WebDBWriter? processes will be involved in any update operation. All of these processes will be run concurrently before
the db update is finished.

Since we know the number of writers ahead of time, it's easy to partition the WebDB keyspace into k regions, one for each WebDBWriter process. MD5
keys can be evenly partitioned according to the first (log k) bits. We derived from data a set of good breakpoint URLs that evenly divide the URL keys.

It would be great if each WebDBWriter process could simply work on just its own part of the db, wholly ignorant of the other processes. Unfortunately,
that's not possible. A WebDBWriter can receive an API call that might touch a record in another Writer's keyspace partition. Even worse, remember that
every stage of WebDBWriter?

execution can emit edits to be processed in later stages. Each of these edits might involve a record in a different Writer's keyspace partition.

Take a moment to recall how the single-processor WebDBWriter applies changes to the WebDB:

Every API call that modifies the db results in writing an "edit" to disk. No edits are applied until the WebDBWriter is closed. An edit might apply to
one or more of the WebDB's tables: URL, MD5?, URL?, MD5?. 2. Upon close, sort the URL edits. Now PagesBy PagesBy LinksBy LinksBy PagesBy
read in two sorted streams: the sorted edits and the preexisting URL database. Emit a single stream: the new, sorted, and correct PagesBy Pages

URL? db. As a side effect, also emit edits that might apply to other tables. 3. Sort the MD5 edits. Merge with preexisting MD5 By PagesBy PagesBy
table, emitting the brand-new MD5 table. Also emit edits to MD5 or URL. 4. Apply same process to MD5. Emit PagesBy LinksBy LinksBy LinksBy
any edits to URL. 5. Apply same process to URL. No more edits will be emitted. (Actually, this isn't strictly true. In certain LinksBy LinksBy
circumstances we may need to re-emit the MD5 edits, and then redo step 4. Don't worry about this for now.)LinksBy

So a distributed WebDBWriter cannot labor in blissful ignorance. It needs to communicate with other writers, particularly when writing out edits to be
performed. We modify the above single-processor algorithm to account for this inter-writer protocol.

The Distributed DB system works as follows:

As before, every API call that a single WebDBWriter receives results in writing an "edit" to disk. However, there are now k different disk locations,
corresponding to each of the k partitions of the web db. Each of the k WebDBWriters is writing to k different files, so there are k^2 edits files all
told. Say that a WebDBWriter has finished writing out all its edits. The WebDBWriter now communicates each partition's edits file to the
corresponding WebDBWriter? process. (That communication happens via our distributed filesystem, NutchFS?, but that's not critical to the
algorithm here.) 2. Having been closed, each WebDBWriter should apply all relevant edits to its partition of the db. At this point, the Writer waits
for each of (k-1) edits files to arrive from other machines. (Of course, one of the k partitions was generated locally.) After files for all k partitions
are available, the WebDBWriter sorts the edits. The sorted edit stream is applied to the local sorted db segment, resulting in a brand-new db
segment for the current partition. This process is carried out by all k WebDBWriters. The URL table is now correct. The data exists PagesBy
across k separate db segments, and the work was distributed across k machines. But as before, applying the URL edits does not just PagesBy
generate a brand-new URL table. It also generates a new set of edits, which may be applicable to any record in the entire db. Thus, as PagesBy
each URL? table segment is being generated, the next set of edits are generated. When each URL? table segment is complete, PagesBy PagesBy
that Writer's emitted MD5? edits are complete as well, and so are sent to each of the (k-1) other Writers. 3. Each of the k Writers waits PagesBy
for its incoming set of (k-1) MD5 edit files. When they arrive, a Writer sorts the full set of k files and applies the sorted edits. It thus PagesBy
generates a new MD5 table segment and a full set of k MD5? edits files. 4. The same process happens across k processes for PagesBy LinksBy
the MD5 table. Emit any edits to k edits files for URL. 5. The same process happens across k processes for the URL LinksBy LinksBy LinksBy
table. However, this time no more edits are generated. 6. The job is now done. The last step is for one of the WebDBWriters to total up the full
size of the new WebDB by looking at each of the k brand-new segments. When this last WebDBWriter is finished, the entire update is complete.

Reading from a distributed WebDB is comparatively simple. The WebDB now exists in k separate pieces. When the distributed WebDBReader needs to
examine a certain key, it simply checks the relevant segment first. When asked to enumerate all entries, it enumerates each of the k segments in order.

It's worthwhile to spend a little time on how the distributed WebDBWriter's inter-process communication works. No process ever opens a socket to
communicate directly with another. Rather, all data is communicated via files. However, since the WebDBWriters exist over many machines and
filesystems, these files need to be copied back and forth.

We do that via the . Really, "filesystem" is overstating the case a little bit. Rather it's a mechanism for a shared file namespace, NutchDistributedFileSystem
with some automatic file copying between machines that announce interest in that namespace.

Every object under control of a machine group is represented with a "NutchFile" object. A is named using three NutchDistributedFileSystem NutchFile
different parameters:

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
#

"dbName" indicates the overall database that the file belongs to. This exists to enable multiple Nutch instances simultaneously on the same
machine set. All files within a given instance will have the same dbName.
"shareGroupName" is used to control where the will be copied. Clients of the ask for via NutchFile NutchDistributedFileSystem NutchFiles
sharegroup. Each machine in a machine group is configured so that it knows the entire (sharegroup<->machine) NutchDistributedFileSystem
mapping. For the purposes of the distributed WebDB, we create a sharegroup for each partition of the webdb. When a single WebDBWriter is
emitting k separate edits files, it is writing to files in k different share groups. Having written everything out, the Writer demands to see any files
meant for its particular segment's sharegroup. (We will also create a "master" sharegroup to contain the final db output.)
"name" is just an arbitrary slash-separated filename. It describes a directory/filename hierarchy for the in question.NutchFile

A object can be resolved to a "real-world" disk File with the help of a local object. Each machine in a NutchFile NutchDistributedFileSystem NutchDistribute
 machine group has a object that handles configuration and other services. One such config value is the place on dFileSystem NutchDistributedFileSystem

a local disk where the "root" of the is found. The disk File embodiment of a is a combination of that root, the NutchDistributedFileSystem NutchFile
shareGroupName, and the name.

(Of course, not all sharegroups' files will be present on each machine. That depends on the (sharegroup<->machine) mapping.)

The also takes care of file moves, deleted, locking, and guaranteed atomicity.NutchDistributedFileSystem

It should be clear that the can be implemented across any group of machines that have mutual remote-access rights. It can NutchDistributedFileSystem
also be used across machines that share mutual Network File System mounts.

#
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
#
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
#
#
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
#
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem
https://cwiki.apache.org/confluence/display/NUTCH/NutchDistributedFileSystem

	DistributedWebDB

