
1.

RunNutchInEclipse
Running Nutch in Eclipse
Thia document provides instructions for setting up a development environment for Nutch within the Eclipse IDE. It is intended to provide a comprehensive
beginning resource for the configuration, building, crawling and debugging of Nutch master branch in the above context.

N.B. Nutch 2.x branch is no longer in development so all documentation relating to that branch has been removed from this guide. If you are interested in
that information then contact the Nutch dev@ team.

Running Nutch in Eclipse
Before you start
Prerequisites
Steps

Clone and Build Nutch
Load project in Eclipse

Create Eclipse launcher
Debug Nutch in Eclipse

Remote Debugging in Eclipse
Debugging and Timeouts

Display Javadoc for Dependent Libraries
Connect a Library to the Javadoc URL
IvyDE

Troubleshooting
eclipse: Cannot create project content in workspace
Plugin directory not found
No plugins loaded during unit tests in Eclipse
Debugging Hadoop classes

Before you start

Setting up Nutch to run in Eclipse can be tricky, and most of the time you are much faster if you edit Nutch in Eclipse but run the scripts from the command
line. However, it's very useful to be able to debug Nutch in Eclipse and is also extremely useful when applying and testing patches/pull requests as it
enables you to see them working in a larger context. This being said, you will still benefit greatly by looking at the output. This tutorial covers a hadoop.log
fully internal Eclipse/Nutch set up, using only Eclipse tools and associated plugins.

Prerequisites

You need to have installed and configured on your system.Apache Ant
Grab the newest version of Eclipse available .here
All of the following should be available from the . However if not, you can download them throughout Eclipse as followsEclipse Marketplace

IvyDE plugin
m2e plugin

Steps

Clone and Build Nutch

Get the latest source code using Git from the terminal. For Nutch 1.x (i.e. master branch) run this:

 git clone https://github.com/apache/nutch.git
 cd nutch

2. Add and with appropriate values in . See for the http.agent.name http.robots.agents conf/nutch-site.xml conf/nutch-default.xml
description of these properties. Also, add and set it to e.g. If Nutch is present at plugin.folders {PATH_TO_NUTCH_CHECKOUT}/build/plugins

, set the property to:/home/tejas/Desktop/nutch

 <property>
 <name>plugin.folders</name>
 <value>/home/tejas/Desktop/nutch/build/plugins</value>
 </property>

http://ant.apache.org/manual/index.html
http://www.eclipse.org/downloads/
http://marketplace.eclipse.org/marketplace-client-intro
https://marketplace.eclipse.org/content/apache-ivyde%E2%84%A2
https://marketplace.eclipse.org/content/maven-integration-eclipse-luna-and-newer

1.

1.

3. Run this command:

 ant eclipse

Load project in Eclipse

}}http://imageshack.us/a/img855/9242/importproject.png

In Eclipse, click on “File” -> “Import...”
2. Select “Existing Projects into Workspace”

3. In the next window, set the root directory to the location where you cloned Nutch master branch. Click “Finish”.
4. You will now see a new project named nutch being added in the workspace. Wait for a moment until Eclipse refreshes its cache and builds its
workspace. You can see the status at the bottom right corner of Eclipse.

http://imageshack.us/a/img855/9242/importproject.png

1.

5. In Package Explorer, right click on the project nutch, select “Build Path” -> “Configure Build Path”

6. In the “Order and Export” tab, scroll down and select . Click on “Top” button. Sadly, Eclipse will again build the workspace but this nutch/conf

1.

time it won’t take take much.

Create Eclipse launcher

Now, lets get geared to run something. Lets start off with the inject operation. Right click on the project in “Package Explorer” -> select “Run As” -> select
“Run Configurations”. Create a new configuration. Name it "inject".

Set the main class as: org.apache.nutch.crawl.Injector

1.
2.

In the arguments tab, for program arguments, provide two Program arguments

the path of the crawldb you wish to create i.e. /home/tejas/Desktop/nutch/crawldb, and
the path of a directory containing seed urls i.e. /home/tejas/Desktop/nutch/urls

Additionally, you should set VM Arguments to “-Dhadoop.log.dir=logs -Dhadoop.log.file=hadoop.log”

Click "Apply" and then click "Run". If everything was set perfectly, then you should see inject operation progressing on console.

If you want to find out the java class corresponding to any command, just peek inside "src/bin/nutch" script and at the bottom you would find a switch case
with a case corresponding to each command. Here are the important classes corresponding to the crawl cycle:

Operation Class in Nutch 1.x (i.e.trunk)

inject org.apache.nutch.crawl.Injector

generate org.apache.nutch.crawl.Generator

fetch org.apache.nutch.fetcher.Fetcher

parse org.apache.nutch.parse.ParseSegment

updatedb org.apache.nutch.crawl.CrawlDb

1.
2.

Debug Nutch in Eclipse

Set breakpoints and debug a crawl
It can be tricky to find out where to set the breakpoint, because of the Hadoop jobs.
Here are a few good places to set breakpoints in the 1.x codebase:

Fetcher [line: 1115] - run
Fetcher [line: 530] - fetch
Fetcher$FetcherThread [line: 560] - run()
Generator [line: 443] - generate
Generator$Selector [line: 108] - map
OutlinkExtractor [line: 71 & 74] - getOutlinks

Remote Debugging in Eclipse

create a new Debug Configuration as and remember the port (here: 37649)Remote Java Application
launch nutch from command-line but add options to use the , e.g. from bash:Java Debugger JDWP Agent Library

% export NUTCH_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=localhost:37649"
% $NUTCH_HOME/bin/nutch parsechecker http://myurl.com/

3. the application will be suspended just after launch

4. now go to Eclipse, set appropriate break-points, and run the previously created Debug Configuration

Instead of creating an extra launch configuration for every tool you want to debug, one single configuration is enough to debug any tool (parsechecker,
indexchecher, URL filter, etc.) and that even remotely (crawler/tool running on server, Eclipse debugger locally).

Debugging and Timeouts

Debugging takes time, esp. when inspecting variables, stack traces, etc. Usually too much time, so that some timeout will apply and stop the application.
Set timeouts in the nutch-site.xml used for debugging to a rather high value (or -1 for unlimited), e.g., when debugging the parser:

<property>
 <name>parser.timeout</name>
 <value>-1</value>
</property>

Display Javadoc for Dependent Libraries

Eclipse is able to show Javadocs immediately, not only for Nutch classes but also for dependent libraries. While Eclipse takes the Javadocs of Nutch
classes directly from the source files, this is not the case for dependent managed libraries. There are two ways to tell Eclipse where to find the Ivy
Javadocs of dependent libs: (1) adding the Javadoc URL to a jar file, or (2) use the IvyDE Eclipse plugin. Note that both ways will modify the file .

. Because the target will overwrite the file, you should make a backup before and merge the changes made via classpath ant eclipse .classpath
Eclipse back afterwards.

Connect a Library to the Javadoc URL

The simplest way to connect a jar library with its Javadocs is to add the Javadoc URL manually in the classpath editor, see screenshot.

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-remotejava_launch_config.htm
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html#jdwp
http://ant.apache.org/ivy/

IvyDE

The Nutch build system delegates the managment of library dependencies to . There is an Eclipse plugin to integrate Ivy's dependency Apache Ivy IvyDE
managment. It is well-documented, including a description . The main Ivy file is but how to add the managed libraries to the Eclipse project ivy/ivy.xml
note that every plugin has its own . If working on a specific plugin, it is a good idea to add also its . It is possible to use IvyDE in addition ivy.xml ivy.xml
to the libraries placed by in .ant eclipse .classpath

The repository hosting a library often also provides packages containing javadoc and sources. E.g., the JUnit repository https://repo1.maven.org/maven2
 provides the following files:/junit/junit/4.11/

junit-4.11-javadoc.jar 14-Nov-2012 19:21 379344
junit-4.11-sources.jar 14-Nov-2012 19:21 151329
junit-4.11.jar 14-Nov-2012 19:21 245039
junit-4.11.pom 14-Nov-2012 19:21 2344

IvyDE is then able to fetch also javadoc and source packages (if provided) and show them in Eclipse. Again, there is an excellent description, how this can
be enabled in the section of the Ivy preferences. Note that the Ivy cache (usually) must be cleaned before Source/Javadoc Mapping ~/.ivy/cache/ Ivy

 is called from Eclipse.Resolve

Troubleshooting

eclipse: Cannot create project content in workspace

The Nutch source code must be out of the workspace folder. Alternatively you can download the code with eclipse (svn) under your workspace rather than
try to create the project using existing code, eclipse sometimes doesn't let you do it from source code into the workspace.

Plugin directory not found

Make sure you set your plugin.folders property correct, instead of using a relative path you can use a absolute one as well in nutch-default.xml or even
better in nutch-site.xml. Ideally all efforts should be made to keep nutch-default.xml completely intact.

<property>
 <name>plugin.folders</name>
 <value>/home/....../trunk/src/plugin</value>

No plugins loaded during unit tests in Eclipse

During unit testing, Eclipse ignored in favor of , so you might need to add the plugin directory configuration to conf/nutch-site.xml src/test/nutch-site.xml
that file as well.

http://ant.apache.org/ivy/
http://ant.apache.org/ivy/ivyde/
http://ant.apache.org/ivy/ivyde/history/latest-milestone/cpc/create.html
https://repo1.maven.org/maven2/junit/junit/4.11/
https://repo1.maven.org/maven2/junit/junit/4.11/
http://ant.apache.org/ivy/ivyde/history/latest-milestone/preferences.html#mapping
http://ant.apache.org/ivy/ivyde/history/latest-milestone/cpc/resolve.html
http://ant.apache.org/ivy/ivyde/history/latest-milestone/cpc/resolve.html

Debugging Hadoop classes

Sometimes (fairly often) it makes sense to also have the Hadoop classes available during debugging. This should really second nature as Nutch heavily
relies upon the underlying Hadoop infrastructure. Therefore you can check out the Hadoop sources into your Eclipse IDE and combine to debug this way.
You can:

Checkout the Hadoop version that should be used within Nutch master branch. You can determine this version by checking ivy.xml.
Configure a Hadoop project similar to the Nutch project within your Eclipse IDE. See .this
Add the Hadoop project as a dependent project of Nutch project
You can now also set break points within Hadoop classes like inputformat implementations etc.

http://wiki.apache.org/hadoop/EclipseEnvironment

	RunNutchInEclipse

