
SumanSaurabh GSoC2015Nutch
Goal : Move Nutch 2.x to Hadoop 2.X from existing 1.x codebase.
The following page is a proposal for GSoC 2015 related to issue Nutch-1936

Introduction
1) About Nutch:
Apache Nutch is a flexible and powerful open source tool for web crawling. It builds on and comes with an integration of the highly Apache Solr
popular . Whole-web crawling is designed to handle very large crawls which may take weeks to complete, running on multiple Apache Hadoop
machines. This also permits more control over the crawl process, and incremental crawling. It is important to note that whole web crawling does
not necessarily mean crawling the entire world wide web. We can limit a whole web crawl to just a list of the URLs we want to crawl.
.
2) Basic Nutch Features:

Runs on top of Hadoop
Scalable: billions of pages possible
Some overhead (if scale is not a requirement)
Not ideal for low latency
Customizable / extensible plug-in architecture * Pluggable protocols (document access)
URL filters + normalizers
Parsing: document formats + meta data extraction
Indexing back-ends
Mostly used to feed a search index

*4) Nutch Work-flow?{{https://sites.google.com/site/nutch1936/_/rsrc/1427176500763/home/introduction/Nutch_Overview.png
*

5) Nutch Workflow execution with Hadoop
.
Every step is implemented as one (or more) job.MapReduce

Inject, generate, fetch, parse, updatedb, invertlinks, index.
local mode

works out-of-the-box (bin package)
useful for testing and debugging

(pseudo-)distributed mode
parallelization, monitor crawls with web UI. MapReduce
recompile and deploy job file with configuration changes.

In basic terms:
Map-reduce indexing

Map() just assembles all parts of documents.
Reduce() performs text analysis + indexing.
Sends assembled documents to Solr or – adds to a local Lucene index Nutch.

Nutch runs in two modes; namely and . When run in local mode e.g. running Nutch in a single process on one machine, local deploy
then we use Hadoop as a dependency. This may suit if we have a small site to crawl and index.

Nutch is mostly used because of its capability to run on in deploy mode, within a Hadoop cluster. This gives the benefit of a distributed
file system (HDFS) and processing style*.* MapReduce

*
*

6) Why Hadoop 2.x over 1.x ?

The major difference between Hadoop 1.x and 2.x is the computation platform they use.
 {{https://sites.google.com/site/nutch1936/_/rsrc/1427213159891/home/introduction/yarn.png

1.x uses MRv1 whereas 2.x uses MRv2(aka YARN). MRv1: Master -> JobTracker
Slave -> TaskTracker
MRv2: Master -> Resource Manager
Slave -> Node Manager
And there is Application Specific Application Master .
Problems with 1 .X 1.

Single Point of Failure for Name Node
No Horizontal Scaling - V1
Impossible to run Non Map Reduce tools because of tight coupling of JobTracker + MR
Does not support Multi-tenancy
Job Tracker overburdened because of too much work.

The functionality of the JobTracker in 1.x split into 2 components :- and . Application Specific Application Master Global Resource Manager
MRv2 introduced a concept of 'container'. Container is nothing but bunch of resources such as 'x amount of memory, y number of cores'.
.
Allocating 'containers' for tasks is done by Resource Manager and tasks are actually launched by Application Master in the allocated containers.
.
As a result,

https://issues.apache.org/jira/browse/NUTCH-1936
http://nutch.apache.org/
http://lucene.apache.org/solr/
http://hadoop.apache.org/
https://sites.google.com/site/nutch1936/home/introduction/Nutch_Overview.png?attredirects=0
https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
#

There are no more map/reduce dedicated slots on each tasktracker, instead there is a 'container' allocated for each task in an
application.
Hadoop 2.x scales better.
NNHA: Name Node High availability for avoiding Single point of failure.
Hadoop 2.x is more general than Hadoop 1.x.
V2 now supports application other MR as well . You can do real time processing using . Apache Storm

Methodology

Phase 1(Learning & Experimenting):

1.1) Explore Nutch Documentation:

Since I have less knowledge about Nutch codebase, I will likely cover Nutch documentation . [1]
.

1.2) Workspace Setup:

Nutch workspace it built on Ant+Ivy. I have experience with Ant build framework, so workspace setup would be relatively easier. I have forked the
Nutch codebase to my Git and after successful completion I will provide the patch. Nutch dependency on Hadoop: is [2] hadoop-core.1.x.jar
changed in Hadoop 2.x

<dependency org="org.apache.hadoop" name="hadoop-core" rev="1.2.0" conf="*->default">
 <exclude org="hsqldb" name="hsqldb" />
 <exclude org="net.sf.kosmosfs" name="kfs" />
 <exclude org="net.java.dev.jets3t" name="jets3t" />
 <exclude org="org.eclipse.jdt" name="core" />
 <exclude org="org.mortbay.jetty" name="jsp-*" />
 <exclude org="ant" name="ant" />
</dependency>

Following dependency needs to be added for Hadoop 2.6 support instead of above.

<dependency org="org.apache.hadoop" name="hadoop-common" rev="2.6.0" conf="*->default" />
<dependency org="org.apache.hadoop" name="hadoop-mapreduce-client-core" rev="2.6.0" conf="*->default" />

Dependency needs to be removed.hadoop-test-1.2.0.jar

<dependency org="org.apache.hadoop" name="hadoop-test" rev="1.2.0" conf="test->default" />

.
1.3) Experimental setup with of Nutch with Hadoop and their result:
I have been using Hadoop 2.3 for my MapReduce application and while trying to setup Nutch 1.9 with Hadoop 2.3. I ran into following error:

Injector:
 java.lang.!UnsupportedOperationException: Not implemented by the !DistributedFileSystem !FileSystem
implementation
 at org.apache.hadoop.fs.!FileSystem.getScheme(!FileSystem.java:214)
 at org.apache.hadoop.fs.!FileSystem.loadFileSystems(!FileSystem.java:2365)
 at org.apache.hadoop.fs.!FileSystem.getFileSystemClass(!FileSystem.java:2375)
 at org.apache.hadoop.fs.!FileSystem.createFileSystem(!FileSystem.java:2392)
 at org.apache.hadoop.fs.!FileSystem.access$200(!FileSystem.java:89)
 at org.apache.hadoop.fs.!FileSystem$Cache.getInternal(!FileSystem.java:2431)
 at org.apache.hadoop.fs.!FileSystem$Cache.get(!FileSystem.java:2413)
 at org.apache.hadoop.fs.!FileSystem.get(!FileSystem.java:368)
 at org.apache.hadoop.fs.!FileSystem.get(!FileSystem.java:167)
 at org.apache.nutch.crawl.Injector.inject(Injector.java:297)
 at org.apache.nutch.crawl.Injector.run(Injector.java:380)
 at org.apache.hadoop.util.!ToolRunner.run(!ToolRunner.java:70)
 at org.apache.nutch.crawl.Injector.main(Injector.java:370) .

May be I will start looking at this point onwards?

Phase 2 (Coding):

2.1) Migrating from Hadoop 1.x to Hadoop 2.x
Binary Compatibility'_ *:
First, we ensure binary compatibility to the applications that use old_ 'mapred* APIs. This means that applications which were built
against MRv1 APIs can run directly on YARN without recompilation, merely by pointing them to an Apache Hadoop 2.x cluster mapred
via configuration.

Source Compatibility:
One cannot ensure complete binary compatibility with the applications that use APIs, as these APIs have evolved a lot since mapreduce
MRv1. n other words, users should recompile their applications that use APIs against MRv2 jars. One notable binary mapreduce
incompatibility break is in Counter
.

Package: crawl
Class: CrawlDbUpdateUtil

. Tradeoffs between MRv1 Users and MRv2 Adopters:
Unfortunately, maintaining binary compatibility for MRv1 applications may lead to binary incompatibility issues for early MRv2 adopters.
Below is the list of APIs which are incompatible with Hadoop 1.3. MapReduce
.

org.apache.hadoop.mapreduce.Job#failTask <--> Return type changes from void to boolean
org.apache.hadoop.mapreduce.Job#killTask <--> Return type changes from void to boolean
org.apache.hadoop.mapreduce.Job#getTaskCompletionEvents <--> Return type changes from o.a.h.
mapred.!TaskCompletionEvent to o.a.h.mapreduce.!TaskCompletionEvent

2.2) Configuring and Running MRv2 Clusters
Configuration Migration

Since MapReduce 1 functionality has been split into two components, MapReduce cluster configuration options have been split into
YARN configuration options, which go in yarn-site.xml, and MapReduce configuration options, which go in mapred-site.xml.
.
As JobTrackers and TaskTrackers no longer exist in MRv2, all configuration options pertaining to them no longer exist, although many
have corresponding options for the ResourceManager, NodeManager, and JobHistoryServer.
.
A minimal configuration required to run MRv2 jobs on YARN is . Detailed configuration for yarn-site.xml configuration conf/mapred-site.

, , will remain same.xml conf/core-site.xml conf/hdfs-site.xml
Configuration for is: .conf/yarn-site.xml

<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
</configuration>

 2.3) Summary of Configuration Changes which I have observed

1) JobTracker Properties and ResourceManager Equivalents .

mapred.job.tracker to yarn.resourcemanager.hostname
Package: crawl
Class: Generator

2) MRv1 Properties that have no MRv2 Equivalents .

mapred.temp.dir has no MRV2 eqivalaent
Package: crawl
Class: DeduplicationJob

https://cwiki.apache.org/confluence/display/NUTCH/MapReduce

1.
2.

Phase 3 (Documentation):

Documentation leading to the detailed description of migration of Hadoop framework in Apache Nutch.
Detailed guide for setting up Hadoox 2.x on Nutch 2.x.

Timeline
_Phase 1: _* *

*_ '27 March- 20 April: *I will acquaint myself comprehensively with Nutch Documentation and Hadoop Framework. Experimenting with Nutch by simple
web crawling techniques will expose myself completely to Apache Nutch.

My end semester exam is scheduled from 26th April to 2nd May. My 4 years B. Tech tenure will be over and will have complete May, June and
July to dedicate to Nutch.

3rd May - 30th of June:* Simple experimentation would have given me detailed insight. Further I would have contributed to the issue
related to Nutch-1219.

Time to submit First Report
_

Phase 2: _* *

 Coding work would be half over, Mid- Term evaluation report submission. Discussion with mentor regarding improvement. _ '1st June - 25th June:

Time to submit Second Report

26th June - 25th July: Coding work would complete and time for System Testing and Bug Fixing that will come up in the project.

Phase 3:

1st August - 7th August: Documentation of the project and preparing tutorial guide for setting up Hadoop 2.x on Nutch 2.x.

_ 8th August - 15th August_: Scrubbing the documentation and other reports to make it more readable and appropriate. Final evaluation report
submitted to Google.

Time to submit Final Report
*

References:

[1] http://wiki.apache.org/nutch/FrontPage

[2] https://github.com/sumansaurabh/nutch

[3] https://sites.google.com/site/nutch1936/home/3-methodology

[4] http://www.cloudera.com/content/cloudera/en/documentation/core/v5-2-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html

[5] http://www.slideshare.net/tshooter/strata-conf2014

http://wiki.apache.org/nutch/FrontPage
https://github.com/sumansaurabh/nutch
https://sites.google.com/site/nutch1936/home/3-methodology
http://www.cloudera.com/content/cloudera/en/documentation/core/v5-2-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html
http://www.slideshare.net/wattsteve/web-crawling-and-data-gathering-with-apache-nutch?related=2

[6] http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core
<
/MapReduce_Compatibility_Hadoop1_Hadoop2.html

[7] *http://www.slideshare.net/wattsteve/web-crawling-and-data-gathering-with-apache-nutch?related=2*

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduce_Compatibility_Hadoop1_Hadoop2.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduce_Compatibility_Hadoop1_Hadoop2.html
http://www.slideshare.net/wattsteve/web-crawling-and-data-gathering-with-apache-nutch?related=2*

	SumanSaurabh GSoC2015Nutch

