
PHP-FPM

High-performance PHP on apache httpd 2.4.x using mod_proxy_fcgi and php-fpm.
php-fpm
apache httpd 2.4

TCP socket (IP and port) approach
unix domain socket (UDS) approach
Proxy via handler
For the impatient

Very simple example
A more flexible example

Performance and Pitfalls
Caveats
Experiments with timeouts

High-performance PHP on apache httpd 2.4.x using mod_proxy_fcgi and
php-fpm.
With the release of apache httpd 2.4 upon an unsuspecting populace, we have gained some very neat functionality regarding apache and php: the ability
to run PHP as a fastCGI process server, and address that fastCGI server , via a dedicated proxy module (mod_proxy_fcgi.)directly from within apache

starting from release 5.3.3 in early 2010, PHP has merged the php-fpm fastCGI process manager into its codebase, and it is now (as of 5.4.1)
quite stable.
php-fpm was previously found at http://php-fpm.org

This means that we can now run secure, fast, and dependable PHP code ; no more messing using only the stock apache httpd and php.net releases
around with or - or, indeed, .suphp suexec mod_php

php-fpm

Prerequisites:

installing software packages
editing configuration files
controlling service daemons.

From release 5.3.3 onwards, PHP now includes the fastCGI process manager (php-fpm) in the stock source code.

Your distribution or OS will either include it in the stock PHP package, or make it available as an add-on package; you can build it from source by adding --
 to your ./configure options.enable-fpm

This provides us with a new binary, called , and a default configuration file called is installed in .php-fpm php-fpm.conf /etc

The defaults in this file should be okay to get you started, but be aware that your distribution may have altered it, or changed its location.

Inside this configuration file you can create an arbitrary number of fastcgi "pools" which are defined by the IP and port they listen on, just like apache
virtualhosts.

The most important setting in each pool is the TCP socket (IP and port) or unix domain socket (UDS) php-fpm will be listening on to receive fastCGI
requests; this is configured using the option.listen

The default pool, , has this configured as : it will only respond to requests on the local loopback network interface [www] listen 127.0.0.1:9000
(localhost), on TCP port 9000.

Also of interest are the and options, which allow you to run that specific fpm pool under the given uid and gid; !per-pool user group goodbye suphp

Pay special attention to the slowlog settings (request_slowlog_timeout and slowlog directives), that is, through this log and a reasonable amount of
timeout, you can easily see which php calls from your application take longer than expected and start debugging them right away.

Let's just use the defaults as shipped and start the php-fpm daemon; if your distro uses the provided init script, run
/etc/init.d/php-fpm start
Or if not, start it manually with
php-fpm -y /path/to/php-fpm.conf -c /path/to/custom/php.ini
If you don't provide php-fpm with its own file, the php.ini will be used. this when you want to include more or less extensions php.ini global Remember
than the CLI or CGI binaries use, or need to alter some other values there.

http://php-fpm.org/

You can include per-pool values in the same way you would define these in apache previously for mod_php, using php.ini php_[admin_]
.(flag|value)

See the for all possible configuration options.official PHP documentation for fpm

I also changed the php-fpm.conf option so I can easily see what is being logged specifically by php-fpm:logging
error_log /var/log/php-fpm.log
If you don't set a php-fpm logfile, errors will be logged as defined in .php.ini

Side note: you can force a running php-fpm to reload its configuration by sending it a SIGUSR2 signal.; SIGUSR1 will cycle the log files (perfect for a
logrotate script!). A little experimentation goes a long way

That's php-fpm taken care of; if there were no errors during startup it should be listening and ready for connections.

apache httpd 2.4

prerequisites:

editing httpd.conf
understanding the vhost context
understanding URL-to-filesystem namespace mapping
controlling the apache httpd daemon

This release of apache httpd has introduced two noteworthy features: a new proxy module specifically for fastCGI (mod_proxy_fcgi), and the move to the e
 MPM as the default apache process manager.vent

As with the worker MPM of the previous version, the threaded model of this MPM causes issues when mod_php is used with third-party non-thread-safe
PHP extensions.

This has been a bane of mod_php users ever since apache 2.2 was released, practically forcing them to cobble together fastcgi solutions, or use the much
slower and memory-hungry prefork MPM.

To work the magic with the PHP fastCGI process manager, we will be using a new module, , which is intended specifically for mod_proxy_fcgi
communicating with (possibly external) fastCGI servers.

Make sure you include the proxy_fcgi module in your httpd.conf so we can use its features; since this requires the base proxy module, ensure both are
loaded (uncommented):

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_fcgi_module modules/mod_proxy_fcgi.so

Now, there are different ways to actually forward requests for .php files this module, ranging from everything (using) to very specific or to [ProxyPass]
rewritten files or patterns (using mod_rewrite with the [P] flag).

The method I chose (using) lies somewhere in between these in complexity and flexibility, since it allows you to set one rule for all PHP ProxyPassMatch
content of a specific vhost, but will only proxy .php files (or URLs that contain the text somewhere in the request)..php

TCP socket (IP and port) approach

Edit the configuration for a vhost of your choice, and add the following line to it:

ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/path/to/your/documentroot/$1

DirectoryIndex /index.php index.php

Look confusing ? Let's run through it:

ProxyPassMatch

${renderedContent}
^/(.*\.php(/.*)?)$

${renderedContent}
The (caret) and (dollar) signs are used to both the absolute and of the URL, to make sure no characters from the request escape our ^ $ anchor start end
pattern match.

The nested parentheses enable us to refer to the entire request-URI (minus the leading slash) as , while still keeping the trailing pathinfo optional.$1

fcgi://127.0.0.1:9000

${renderedContent}

http://www.php.net/manual/en/install.fpm.configuration.php
http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html
#

This determines which fastcgi will serve requests proxied by this rule.pool
/path/to/your/documentroot/

${renderedContent}
php-fpm just interprets the php files passed to it; it is not a web server, nor does it understand your web servers' namespace, virtualhost layout, or aliases.

IMPORTANT! Read the above again
$1

${renderedContent}
DirectoryIndex /index.php index.php

${renderedContent}

unix domain socket (UDS) approach

Edit the configuration for a vhost of your choice, and add the following line to it:

ProxyPassMatch ^/(.*\.php(/.*)?)$ unix:/path/to/socket.sock|fcgi://localhost/path/to/your/documentroot/

unix:/path/to/socket.sock

${renderedContent}
Note that with this approach, the captured request URI ($1) is not passed after the path

Proxy via handler

With this approach, you can check for the existence of the resource prior to proxying to the php-fpm backend.

Defining a worker will improve performance

And in this case, re-use the worker (dependent on support from the fcgi application)

If you have enough idle workers, this would only improve the performance marginally

<Proxy "fcgi://localhost:9000/" enablereuse=on max=10>

</Proxy>

<FilesMatch "\.php$">

{{ <If "-f %{REQUEST_FILENAME}">}}

{{ # Pick one of the following approaches}}

{{ # Use the standard TCP socket}}

{{ #SetHandler "proxy:fcgi://localhost/:9000"}}

{{ # If your version of httpd is 2.4.9 or newer (or has the back-ported feature), you can use the unix domain socket}}

{{ #SetHandler "proxy:unix:/path/to/app.sock|fcgi://localhost/"}}

{{ </If>}}

</FilesMatch>

Combining and can achieved as such:FilesMatch If

<If "-f %{REQUEST_FILENAME} && %{REQUEST_URI} =~ /.+\.ph(ar|p|tml)$/" >

For the impatient

Very simple example

If you're interested into the proof of concept and want to leave the tweaking for later, you can use the following recipe. It'll conjure up the standard php info
page listing all compiled-in and loaded extensions, and all runtime configuration options and script info.

First, create a file, /var/www/info.php containing:

<?php phpinfo() ?>

The assumption is that /var/www is the of an existing vhost.DocumentRoot

Inside this vhost, add the following line:

ProxyPassMatch ^/info$ fcgi://127.0.0.1:9000/var/www/info.php

Reload apache with and you can now call up the phpinfo page using apachectl graceful http://example.com/info

http://httpd.apache.org/docs/current/mod/core.html#filesmatch
http://httpd.apache.org/docs/current/mod/core.html#if
http://httpd.apache.org/docs/current/mod/core.html#documentroot
http://example.com/info

This is a very simple example, mapping one unique URL to a single PHP file.

A more flexible example

To proxy files in your vhost to the fcgi server using their real php file locations, you can use a more flexible match:all .php

ProxyPassMatch ^/(.*\.php)$ fcgi://127.0.0.1:9000/var/www/$1

Again, assuming is the of the vhost in question./var/www DocumentRoot

Reload apache with and you can now call up the phpinfo page using apachectl graceful http://example.com/yourscript.php

Performance and Pitfalls

mod_proxy_fcgi now supports unix domain sockets since 2.4.9 ()Unix domain socket support for mod_proxy_fcgi

It is easy to overwhelm your system's available sockets, pass over ulimits, etc. Some tips to avoid this:

Using too many sockets will cause apache to give a error. This means your operating system is not (99)Cannot assign requested address:
allowing new sockets to be created.

On linux you can use /proc/sys/net/ipv4/tcp_tw_reuse to not build up as many sockets, but there are warnings associated with using this behind a NAT.

Be sure to modify ulimit and allow for enough open files and processes for both the apache user and the php-fpm user.
 and (nofile and nproc)ulimit -n ulimit -u

If php-fpm does not have a large enough nproc it will exit (, no additional information as of php 5.3) in a loop without additional messages.code 255

If php-fpm does not have a large enough nofile you will probably not be able to get logging per child, as shown above. It will give this in the general error
log.

If apache and php-fpm run as the same user (not necessary or recommended) and nproc is too small, apache will not startup with the following message (
11)Resource temporarily unavailable: AH02162: setuid: unable to change to uid: 600

Warning: when you a request to another server (in this case, the php-fpm daemon), authentication restrictions, and other configurations placed ProxyPass
in a Directory block or .htaccess file, may be bypassed.

Caveats

One might be tempted to point out that a greedy directive might allow some malicious content uploaded by a HTTP client to be served.ProxyPassMatch

This is by no means a comprehensive security document, but instead will point out a possible injection vector that could be generated from the directives in
this document.

Take, for example:

/uploads/malicious.jpg/lalalaalala.php

Would lead php-fpm to process that file (/uploads/malicious.jpg), and without certain sanity check, possibly lead to a compromised server.

This, of course, is not recommended. Content uploaded using php should be saved safely outside the , and the pathinfo should be DocumentRoot
scrutinized.

Additionally, php-fpm should check if the script being invoked is allowed.

If such restrictions cannot be implemented easily, then checks could be performed prior to proxying with a or to ensure RewriteCond FallbackResource
that the URI is not altered by the HTTP client.

Experiments with timeouts

For long-running scripts, setting a large timeout might help. This approach will set the time out value to 300 seconds, and allow you to be selective about
what requests are proxied:

<Proxy "unix:/var/run/php-fpm/example.com.sock|fcgi://localhost">
 ProxySet timeout=300
</Proxy>

<FilesMatch \.php$>
 SetHandler "proxy:fcgi://localhost"
</FilesMatch>

http://httpd.apache.org/docs/current/mod/core.html#documentroot
http://example.com/yourscript.php
https://issues.apache.org/bugzilla/show_bug.cgi?id=54101
#
http://httpd.apache.org/docs/current/mod/mod_proxy.html#proxypassmatch
http://httpd.apache.org/docs/current/mod/core.html#documentroot
http://httpd.apache.org/docs/current/mod/mod_rewrite.html#rewritecond
http://httpd.apache.org/docs/current/mod/mod_dir.html#fallbackresource

	PHP-FPM

