
PerformanceScalingOut
Performance Optimization: Scaling Out
This wiki page is intended to wikify: http://people.apache.org/~sctemme/ApconUS2007/scalingout.pdf

Drop all of the things that are out-dated, or, if applicable update them.

Should we have managed to reach some kind of consensus on docs@, we can then merge it into

http://httpd.apache.org/docs/trunk/misc/perf-tuning.html

See also: http://wiki.apache.org/httpd/PerformanceScalingUp

Performance Optimization: Scaling Out
Introduction

Why Would You Scale Out?
Building Out: Load Balancing

Load Balancing with DNS
Distinct Servers for Distinct Services
DNS Round-Robin

Peer-based Load Balancing
Windows Network Load Balancing

Load Balancing Appliance
How a Load Balancer Works
Linux Virtual Server

Load Balancing with Tomcat
Session Replication in a Tomcat Cluster

Load Balancing with Apache 2.2
Building Out: Separate Tiers

The Web Server Tier
The Application Server Tier
The Database Server Tier

Designing Your Site for Scaling Out
Designing for a Load Balancer

Conclusion
DNS Round-Robin Zone File
Linux Virtual Server Configuration
Example Tomcat 5.5 Load Balancing Configuration

Session Replication in a Tomcat Cluster
Testing your Deployment

Introduction
Building out a web server infrastructure is a large and multifaceted challenge. The server infrastructure for any large web site is necessarily customized for
the needs and requirements of that site, thus it is very difficult to make valid general statements about scaling technologies. This paper and its
accompanying presentation give a general overview of the field, touching upon approaches and technologies rather than discussing them in ApacheCon
depth.

Why Would You Scale Out?

Scaling Out is a business decision. You may scale out because you cannot meet your performance goals with a single web server. Alternatively, you may
scale out to meet reliability and uptime goals. There are many approaches to scaling out, with varying price tags. So whatever your motivation, to scale out
your web infrastructure you will have to justify added expenses for server hardware, network equipment, possibly software licenses and maintenance
contracts, and most certainly system administration time and resources.

Building Out: Load Balancing
Scaling Out means adding more servers. The primary issue that arises when servers are added is how to direct client transactions to multiple hosts. The
user does not know and does not need to know that multiple servers are in use. They just want to point their browser to and spend a www.example.com
lot of money on your products or services. In this section we will review several techniques to distribute client transactions across your hosts.

Load Balancing with DNS

You have a great deal of control over where your users direct their transactions by using the Domain Name Service (DNS) for your site. This seems
obvious, but it is critical to scaling. When your users connect to , they don’t care to which IP address this resolves. If you can www.example.com
manipulate this resolution, you can send the user to whichever physical server you prefer, which can be of great benefit to the infrastructure

Distinct Servers for Distinct Services

http://people.apache.org/~sctemme/ApconUS2007/scalingout.pdf
http://httpd.apache.org/docs/trunk/misc/perf-tuning.html
http://wiki.apache.org/httpd/PerformanceScalingUp
#

One way to distribute transaction load across multiple physical servers is to give each server a separate task. For your site, use anwww.example.com
 server to serve static image content, a images.example.com secure.example.com

server to handle SSL transactions, etc. This approach allows you to tune each server for its specialized task. The downside is that this approach does not
scale by itself: once, for instance, your secure server runs out of processing headroom, you will have to add more machines using one of the techniques
described below.

DNS Round-Robin

If you operate multiple servers that perform identical functions, you can distribute client transactions among them using Domain Name Server Round-
Robin. The principle behind this technique is that a single server hostname resolves to a different IP address from your server pool for each DNS
resolution request. For instance, if you have three web servers with the IP addresses

10.11.0.113
10.11.0.114
10.11.0.115

and you have your name server return each of those addresses in turn for queries to your web server name (), roughly one third of www.scalingout.org
all clients will connect to each of your web servers. Since popular name server implementations like bind implement this technique by default, it is very
simple to implement without any resource requirements besides control over your DNS zone.

How "roughly" this works depends on many factors, over few of which you have any control. Client-side resolvers cache query responses, as do
intermediate nameservers at ISPs and corporations. Large ISPs and corporations represent many potential users, all of whom would be directed to the
same web server for as long as their nameserver caches the original lookup. However, across your entire user population these discrepancies may even
out. You can help this process by reducing the cache timeout for query results in your zone file. An example zone file that uses DNS Round-Robin is
shown in Appendix A.

DNS Round-Robin as a load balancing approach is often disparaged because of its simplicity: it does not take into account the load on the servers, and
can not compensate for server outage. If a server goes down for any reason, one third of all clients will still be directed to the nonfunctional server. If these
considerations are important to you, consider one of the more sophisticated load balancing approaches described below. However, do not dismiss DNS
Round-
Robin out of hand. Depending on your requirements, it may be all you need.

Peer-based Load Balancing

You can turn a collection of individual servers into a cluster by using load balancing techniques. In this section we will discuss Microsoft's approach.

Windows Network Load Balancing

Windows Load Balancing Service (WLBS) technology has been available since Windows NT Server 4.0, Enterprise Edition and is now included in
Windows Server 2003 under the name Network Load Balancing (NLB). Using Network Load Balancing, you can turn up to 32 servers into a cluster. The
service work by having every machine assume the same IP address, and the same MAC address, on the clustered interface(s). Incoming connections
arrive at all members of the cluster simultaneously from the network switch. The NLB software communicates between cluster members over a unicast or
multicast backchannel and is responsible for the load balancing decisions. It sits between the network card driver and the TCP/IP stack, and regulates
which cluster member gets to answer each incoming request. Cluster members whose NLB module doesn't communicate with the other members get
removed from the pool. This allows NLB to provide High Availability as well as load balancing functionality.

Because it operates below the TCP/IP layer, Network Load Balancing should be compatible with any service that runs on the server machines. Each
cluster member has to be configured exactly the same. Please see your Windows Server 2003 documentation for details.

Load Balancing Appliance

The market for dedicated load balancing appliances is now quite crowded, with offerings from vendors like Cisco, F5, Juniper, Foundry and many others
vying for your attention. These products can be pricey, but are powerful solutions for load balancing your server farm.

How a Load Balancer Works

Load balancing appliances or application switches sit between the web servers and the outbound network connection and intelligently distribute traffic
across multiple web servers. They typically keep track of the load and availability of the servers, and adjust their load balancing decisions accordingly.
Many of these products can operate on several layers of the network stack and can inspect incoming requests to make load balancing decisions based on
source address, requested URI, cookies submitted etc.

Linux Virtual Server

The Linux Virtual Server project is an open source load balancing and high availability implementation. Its core module, IP Virtual Server, is included in the
kernel as of version 2.6.10. Auxiliary software like is only an install away. If you are considering rolling your own load balancing solution, ipvsadm
consider Linux Virtual Server.

The primary disadvantage of Linux Virtual Server is that it does not come as a nice, shiny plug-and-play box with a support contract. Instead, it looks more
like an Erector Set (also known as) of bits and pieces that you get to integrate yourself. However, this disadvantage can also be a strength: it Meccano
allows you to build a solution that best fits your needs. However, the absence of a 24x7 support plan may upset your decision makers. You can find an
example configuration for Linux Virtual Server in Appendix B.

Load Balancing with Tomcat

The Tomcat application server and its Apache HTTP Server connector provide load balancing functionality that allows running a number of mod_jk
Tomcat instances behind a single web server.

This approach to Scaling Out is important for both performance and reliability reasons. On the performance side, the web server can distribute resource
intensive application traffic among multiple application servers. From a reliability point of view, it becomes possible to selectively take down Tomcat
instances for maintenance, without affecting overall availability of your application. Or, you can periodically stop-start Tomcat instances to prevent the build
up of is-
sues like memory leaks. Additionally, in the event a Tomcat instance crashes, the load balancing worker will automatically take it out of the pool mod_jk
until it becomes available again.

The load balancing functionality in uses a round-robin algorithm to assign requests to its workers. It maintains sticky sessions based on the mod_jk
Tomcat session cookies, so requests that belong to the same application session will always be routed to the same Tomcat instance. A complete example
of a Tomcat/ load balancing configuration is available in Appendix C. You can also load balance a number of Tomcat servers using the mod proxy mod_jk
balancer module that comes with Apache 2.2. This approach is discussed in Section 2.5.

Session Replication in a Tomcat Cluster

Sticky sessions allow for session persistence across a load balancer by having it always route traffic that carries a specific session cookie to the same
back-end Tomcat server. However, when one of the back-end servers crashes or is taken out of service for maintenance, the sessions it is serving at that
moment are lost. This is highly undesirable if these sessions represent customers' shopping carts or banking transactions. Tomcat clustering and session
replication prevents session loss by copying session information from any cluster member to all the other members as soon as a session is created.

Clustering works over IP multicast. There are specific requirements for the environment and session objects, which must be serializable. These require-
ments are discussed in the Tomcat documentation. An example configuration is discussed in Appendix C.

Load Balancing with Apache 2.2

Version 2.2 of the Apache HTTP Server includes a load balancing proxy module, mod proxy balancer. This add-on to mod proxy can balance incoming
requests between multiple back-end servers. It can persist connections to a particular back-end based on a configurable Cookie key like or JSESSIONID P

. The configuration looks as follows:HPSESSIONID

Listen 80
LogLevel debug
TransferLog logs/access_log

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

ProxyPass / balancer://mycluster/
ProxyPassReverse / http://localhost:16180
ProxyPassReverse / http://localhost:16280

<Proxy balancer://mycluster>
 BalancerMember http://1.2.3.4:80
 BalancerMember http://1.2.3.5:80
</Proxy>

The configuration above will equally distribute requests between two back-
end web servers. If your back-end servers are running Tomcat, you can enable sticky sessions as follows:

...
<Proxy balancer://tccluster>
 BalancerMember http://localhost:15180 route=tc1
 BalancerMember http://localhost:15280 route=tc2
 BalancerMember http://localhost:15380 route=tc3
</Proxy>

<Location />
 ProxyPass balancer://tccluster/ stickysession=JSESSIONID
 Require all granted
</Location>

The file of each Tomcat server has to be edited to include aserver.xml
 attribute in the Engine element. For instance, in the first Tomcat, you have:jvmRoute

<!-- ... -->
<Server port="15105" shutdown="SHUTDOWN">
<!-- ... -->
 <Service name="Catalina">
 <Connector port="15180" maxHttpHeaderSize="8192"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" redirectPort="8443" acceptCount="100"
 connectionTimeout="20000" disableUploadTimeout="true" />
 <!-- ... -->
 <Engine name="Catalina" defaultHost="localhost" jvmRoute="tc1">
 <!-- ... -->
 </Engine>
 </Service>
</Server>

The module also contains a small management application, which you can enable using the following configuration snippet:mod_proxy_balancer

<Location /balancer-manager>
 SetHandler balancer-manager
 # Your access control directives here
 Order Allow,deny
 Allow from all
 # ...
</Location>

The management feature requires the presence of in addition to . As you can see, the load balancing reverse proxy mod_status mod_proxy_balancer
in Apache HTTP Server 2.2 is quite easy to set up. For more information about the configuration options, please see the documentation. More mod_proxy
information on the algorithms for the load balancing decision can be found in the mod proxy balancer documentation.

Building Out: Separate Tiers
Most web applications can be separated into multiple distinct tiers:
Web server tier(Apache, IIS, Sun ONE)
Application server tier (Tomcat, PHP, , etc.)WebLogic
Database server tier (MySQL, Oracle, Postgres, etc.) Every tier has distinct and particular performance requirements. Moving each tier to their own
hardware allows you to tune and scale them individually. The fact that all of the individual applications communicate with each other over TCP/IP already
makes this move even easier.

The Web Server Tier

The tier communicates directly with the users. It is responsible for maintaining connection with a wide variety of client browsers across Web Server
potentially slow and far-flung connections. This causes a markedly different load on the operating system TCP stack than the long-lived, local, high speed
connections between web and application server, and between application server and the database. The web tier can also be configured to serve the
application's static content: HTML pages, images, , etc. It passes only the requests for dynamically generated content (PHP scripts, JavaScript JavaServer
Pages, RSS feeds) on to the application tier. The type of server used for this tier typically has one or two CPUs and enough memory to fit the requisite
number of httpd processes. Storage is not a concern.

The Application Server Tier

The tier generates all dynamic content. It receives requests from the web tier and maintains connections to the database tier. The Application Server
operating system can be tuned specifically to run an application server platform such as a Java virtual machine. The type of server used for this tier may
have multiple CPUs as required to run application threads. These servers have more memory than the web servers as required by the application platform,
but storage is not important on this tier.

The Database Server Tier

The tier stores all application data. The application server tier connects to the database tier using the JDBC protocol or native database Database Server
libraries. Database access can be a considerable bottleneck for application performance, so performance is an important consideration for this tier. The
type of server used for this tier should have sufficient CPU power and RAM to run the database application, and come with scalable, redundant storage
like a RAID-5 array.

Designing Your Site for Scaling Out

#
#
#

Designing for a Load Balancer

A Load Balancer introduces an additional moving part to your web server infrastructure. While most load balancer solutions do their best to appear
transparent to the application, you may find some issues that you can solve by properly designing your application.

The main issue arises with session persistence. The HTTP protocol is inherently stateless, which is great for a load balancer: it can consider each
incoming request for itself and make a completely independent load balancing decision based on its criteria. Session persistence potentially complicates
this issue, especially if a user's session exists only on the server that initially created it. If a subsequent request from that user is directed to a different
back-end server, the session is lost. Most load balancing solutions solve this problem by consistently directing requests from a particular IP address to the
same back-end server. Some can inspect incoming HTTP requests and make load balancing decisions based on session cookies.

These load balancer based fixes should be enough under most circumstances, but your requirements may be more stringent: what if the user reconnects
after his lunch break and the load balancer has timed out because of inactivity from the user's IP address? Or the user reconnects from a different IP
address (let's say she leaves one Starbucks and reconnects from the one across the street)? Or the server that holds the user's session goes offline
because of a crash or maintenance? If it is important to you to maintain user sessions under circumstances like these, you should build session
persistence into your application. Users sessions are likely to cause more reads than writes. You could write session information to your back-end
database, or use a special, fast database with a write-through cache just for session maintenance.

Conclusion
Scaling out your web site is a mixed blessing. While you get to serve more transactions and, presumably, do more business, the additional hardware,
software and network segments will also give you more intricacies to oversee. You get to manage, maintain and secure a farm of servers instead of just
one. The configuration of your servers, and application software and content design will be highly influenced by the infrastructure design decisions you
make, and they will be heavily intertwined. However, with judicious planning, scaling out can be an efficient and effective solution to increased site
demands.

DNS Round-Robin Zone File
The following is a very basic DNS Zone file that uses Round-Robin DNS to balance three web servers.

scalingout.org. 86400 IN SOA ns.scalingout.org. sctemme.scalingout.org. (
 2006051401 ; Serial
 86400 ; refresh (1 day)
 7200 ; retry (2 hours)
 8640000 ; expire (10 days)
 86400) ; minimum (1 day)

scalingout.org. IN NS bagheera.scalingout.org.

gw IN A 10.11.0.1
bagheera IN A 10.11.0.2

; ...

mail IN CNAME bagheera
ns IN CNAME bagheera

www IN A 10.11.0.113
 IN A 10.11.0.114
 IN A 10.11.0.115

Linux Virtual Server Configuration
This example uses a Linux Virtual Server director running (The Breezy Badger). The outside interface of the Director has IP address Ubuntu 5.10 10.0.

, its inside interface is on . Two back-end web servers are connected to an internal interface of the Director. Their Ethernet interfaces 0.1 192.168.1.1
are configured for and respectively, and both have for default gateway. On the Director machine, the file 192.168.1.2 192.168.1.3 192.168.1.1 /et

 has the following information:c/ipvsadm.rules

ipvsadm.rules
-A -t 10.0.0.1:80 -s rr
-a -t 10.0.0.1:80 -r 192.168.1.2:8080 -m -w 1
-a -t 10.0.0.1:80 -r 192.168.1.3:8080 -m -w 1

and the file looks as follows:/etc/defaults/ipvsadm

Do not edit! Use ’dpkg-reconfigure ipvsadm’.
AUTO="true"
DAEMON="none"

The tool mentioned in the comment has interactive menus for the two variables. This is all the configuration necessary to run Linux Virtual Server in NAT
mode: a reboot or the command issued as/etc/init.d/ipvsadm start

 starts the load balancer.root

Example Tomcat 5.5 Load Balancing Configuration
This example uses an Apache HTTP server with the module, and three Tomcat instances load balanced with sticky sessions. Note that the mod_jk
example does not cover any access control or authorization. It is recommended that you restrict access to the status Worker.mod_jk

The following is an snippet that sets up :httpd.conf mod_jk

Load the mod_jk module. You would obviously use the
path to your own httpd installation.
LoadModule jk_module /Volumes/Files/asf/httpd-r415210w/modules/mod_jk.so

Mount your web applications. We are using the
examples that come with Tomcat
JKMount /servlets-examples/* loadbalancer
JKMount /*.jsp loadbalancer

The mod_jk Manager application. Please implement appropriate
access control on production systems.
JkMount /jkmanager/* jkstatus

Log mod_jk activity. You probably want a less verbose log level
JKLogFile logs/jk_log
JKLogLevel debug

The JKWorkerProperty directive is new as of mod_jk 1.2.7. It allows
you to specify mod_jk worker configuration directives in httpd.conf
instead of a separate workers.properties file
JKWorkerProperty worker.list=loadbalancer,jkstatus

Define three Tomcat instance workers
JKWorkerProperty worker.tc1.port=15109
JKWorkerProperty worker.tc1.host=localhost
JKWorkerProperty worker.tc1.type=ajp13
JKWorkerProperty worker.tc1.lbfactor=1

JKWorkerProperty worker.tc2.port=15209
JKWorkerProperty worker.tc2.host=localhost
JKWorkerProperty worker.tc2.type=ajp13
JKWorkerProperty worker.tc2.lbfactor=1

JKWorkerProperty worker.tc3.port=15309
JKWorkerProperty worker.tc3.host=localhost
JKWorkerProperty worker.tc3.type=ajp13
JKWorkerProperty worker.tc3.lbfactor=1

Define a load balancer worker that uses the three
Tomcat instances
JKWorkerProperty worker.loadbalancer.type=lb
JKWorkerProperty worker.loadbalancer.balance_workers=tc1, tc2, tc3

Define the mod_jk status worker
JKWorkerProperty worker.jkstatus.type=status

In the server.xml configuration file of each Tomcat, you need to set the jvmRoute attribute of the Engine element to match the corresponding worker name.
For instance for the first Tomcat instance:

...
 <Engine name="Catalina" defaultHost="localhost" jvmRoute="tc1">
...

If you don’t set this attribute, sticky sessions will not work!

Session Replication in a Tomcat Cluster

The default configuration file that comes with Tomcat contains an example clustering configuration. This example is commented out. To server.xml
enable clustering, find the element in the configuration file and uncomment the entire element. If your test Tomcats are <Cluster> ... </Cluster>
running on the same host, change the attribute of the Receiver element to a unique value for every instance. For instance:tcpListenPort

 <Cluster className="org.apache.catalina.cluster.tcp.SimpleTcpCluster"
 managerClassName="org.apache.catalina.cluster.session.DeltaManager"
 expireSessionsOnShutdown="false"
 useDirtyFlag="true"
 notifyListenersOnReplication="true">

<!-- ... -->

 <Receiver
 className="org.apache.catalina.cluster.tcp.ReplicationListener"
 tcpListenAddress="auto"
 tcpListenPort="15101"

<!-- ... -->

The second Tomcat instance gets , the third tcpListenPort="15201" 15301
etc. Every web application that uses session replication has to have a distributable element in its file. For instance, to make the Tomcat Servlet web.xml
examples distributable, edit for every cluster member and add to the webapps/servlets-examples/WEB-INF/web.xml <distributable /> <web-

 container.app>

Testing your Deployment

To test the deployment as described above, place an file in theindex.html
 directory of every Tomcat instance with some distinctive text like "This is Tomcat 1" (and 2, and 3 respectively). Subsequent requests webapps/ROOT

from a client to your load balancing Apache should show you the index pages from all your back-end serves in succession.

Testing sessions, sticky sessions and replication is not as simple. Browsers very efficiently manage session cookies in a fashion completely transparent to
the user, so it is not easy to observe the exact behavior between client and server. For this reason, it is often better to use a command-line client like curl

. For instance, you can test session behavior using the following command:(1)

$ curl -i -b /tmp/cookiejar -c /tmp/cookiejar \
> http://localhost:15080/servlets-examples/servlet/SessionExample

The first time you invoke this command, you will see a Set-Cookie: header appear in the response, and the generated HTML page will display the session
ID. The last element of the session ID should be the value of the Tomcat instance that received the request. Subsequent requests will show the jvmRoute
same session ID in the page, since requests will be routed to the same instance using the sticky session. Store some data in the session by invoking:

$ curl -i -b /tmp/cookiejar -c /tmp/cookiejar \
> http://localhost:15080/servlets-examples/servlet/SessionExample\
> ?dataname=foo\&datavalue=bar

The value shoud now appear under "The following data is in your session" in the generated HTML page. Shut the receiving Tomcat down by foo = bar
calling its script, and try the request again. If you didn't configure clustering, you will receive a response from a different Tomcat bin/shutdown.sh
instance with a new session ID. If you did configure clustering, however, the new Tomcat will have replicated the session data from the first one and you
should see the same session ID, and the same key/value pair stored in the session.

	PerformanceScalingOut

