
1.
2.
3.

4.

ReleaseStrategyProposal
release strategy proposal

Problems to address

Instability of stable releases
+1: covener

Conservatively managed distributions are drifting farther and farther away from HEAD
+1: covener

Things working well

New modules can get into users' hands pretty easily.
+1: covener

Few streams to worry about
+1: covener

Long lifecycle of a release
+1: covener

Proposal 1

This is a WIP. Please feel free to edit if you preserve the spirit, or fork it into a new proposal if you don't.

The philosophy here is to have 1 or more conservatively managed releases but to also always have 1 or more more liberally managed releases where
slightly more disruptive things are tolerated. But the latter is neither trunk nor a "development" release.

Some things that characterize a more conservatively managed release:

Behavior changes tend to be opt-in.
Refactoring is limited.
New function, new directives, and new modules are acceptable if their enablement doesn't put the stability of existing function at risk.

For example, mod_md on its own would have been OK, but the changes to mod_ssl to accommodate it would have needed to be (at
best) guarded differently.

Establish a litmus test ("rules") for what can go into early maintenance levels of a release
Establish rules for what can go into later maintenance levels of a release
Establish rules for how a major.minor graduates from "early" to "late"

What does it mean for the previous 1 or 2 major.minor?
We owe special handling to 2.4 because it didn't start this way.

Formally document the above

How this would work over time:

2.6 is released with a few new/small things
2.4 is stabilized
2.6.$small continues to get the kinds of things we're doing in 2.4 today
Eventually something big comes along and we do a 2.7 or 2.8
2.6 is stabilized when 2.7/2.8 is released

2.4 sticks around but maybe we pick an EOL. For 2.4, we pick it farther out then we normally would since the policy is post-GA.

Problems

Do we need to only pick a subset of major.minor's to be eventually-LTS so we don't end up with different distributions on arbitrary major.minors?
This helps cap the # of streams in service AND avoids distributions picking different ones and causing more work on all sides.

	ReleaseStrategyProposal

