
Gump3CommandLineOptions
Command line options reference

 Utility commandline interface for Gump.

 Usage:
 ./gump command [opts ...]

 Available commands are:

 run -- run pygump
 debug -- run pygump in debug mode, attaching pdb
 debug-with-wing -- run pygump in debug mode, attaching the Wing IDE
 test -- run the pygump unit tests
 dynagump -- run the dynagump web application server
 webgump -- run the webgump application server
 update-host -- update the configuration of a gump host
 create-database -- create a new gump MySQL database
 pycompile -- compile all pyump source files

 Run

 ./gump help [command]

 for more information about a particular command.

 Run

 ./gump help variables

 for more information about the environment variables that alter gump its
 behaviour.

Environment variables

 Gump needs various other programs available in order to run. You
 can change which programs gump tries to use using environment variables.
 In addition, several core gump settings are also customizable using
 environment variables.

 You can set all these variables (except for GUMP_HOME) in the file

 /home/lsimons/svn/gump/branches/Gump3/giraffe-settings.sh

 the location of this file is found as follows:

 GUMP_HOME/GUMP_HOSTNAME-settings.sh

 Recognized variables are:

 GUMP_HOME -- location of the gump subversion checkout. Defaults
 to the current working directory if possible.
 GUMP_HOSTNAME -- name of this machine. Defaults to the output from the
 hostname command.
 GUMP_ENV_FILE -- location of the file that contains the custom
 settings to load (i.e. the file mentioned above). You
 can override GUMP_HOME and GUMP_HOSTNAME here, but that
 may have some unpredictable effects.
 GUMP_PYTHON -- the name of the python executable to use. Defaults to
 the latest version of python that is installed. Note
 that pygump is supported only on python2.4.
 GUMP_WORKDIR -- the directory that pygump will generate various files in
 (like log output). Defaults to GUMP_HOME/pygump/work.
 JAVA_HOME -- the location of a java development kit. Gump tries to
 work with any JDK, but results may vary (for example,
 both ant and maven require jdk 1.2 at least).

 These variables are only used by dynagump:

 JAVA_OPTIONS -- Extra options to pass to the JVM.
 JETTY_PORT -- Override the default port for Jetty. Defaults to 8080.
 JETTY_ADMIN_PORT -- The port where the jetty web administration should
 bind. Defaults to 8081.
 JAVA_DEBUG_PORT -- The port the JVM debug server should listen to.
 Defaults to 8082.

 Of course, the various commands that gump issues may also behave
 differently based on environment variables. For example, maven reacts to
 MAVEN_HOME, many make-based build scripts respect the CC environment
 variable, etc etc.

The 'run' command

Run pygump.

usage: gump run [options ...]

options:
 -h, --help show this help message and exit
 -d, --debug print extra information
 -q, --quiet print as little information as possible (overrides
 --debug)
 --homedir=HOMEDIR the base directory for gump
 --hostname=HOSTNAME the hostname gump will use
 --workdir=WORKDIR the working directory gump will use
 --logdir=LOGDIR the directory gump will write logs to
 -w WORKSPACE, --workspace=WORKSPACE
 absolute path to the workspace gump will use
 -u, --do-updates run cvs and svn updates
 -b, --do-builds run builders
 --databaseserver=DATABASESERVER
 hostname of the database server gump will connect to
 --databaseport=DATABASEPORT
 port of the database server gump will connect to
 --databasename=DATABASENAME
 name of the database gump will connect to
 --databaseuser=DATABASEUSER
 username gump will use to connect to the database
 --databasepassword=DATABASEPASSWORD
 password gump will use to connect to the database
 --color write log output using ansi color codes
 --irc=IRC enable an IRCbot during this run using
 nickname@irc.freenode.net/channel
 --attach-pdb Run within the Python Debugger (PDB)
 --attach-wingdb Run within the Wing IDE Debugger

The 'dynagump' command

 Run Dynagump.

 Usage:
 ./gump dynagump dynagump-action [dynagump-args ...]

 The available actions are:

 run Run in a servlet container
 admin Run in a servlet container and turn on container web administration
 debug Run in a servlet container and turn on JVM remote debug
 profile Run in a servlet container and turn on JVM profiling

 If no action is specified, gump passes run as the action to
 execute.

The 'debug' command

 Run pygump in debug mode.

 Usage:
 ./gump debug [gump.py-args ...]

 This is not the same as executing the 'run' command with a '--debug'
 parameter. Using this command will actually start the command line
 debugger pdb to run gump in, whereas the '--debug' option customizes
 the log verbosity gump will use.

 This command otherwise accepts the same arguments as the 'run'
 command.

The 'debug-with-wing' command

 Run pygump in debug mode.

 Usage:
 ./gump debug [gump.py-args ...]

 This is not the same as executing the 'run' command with a '--debug'
 parameter. Using this command will actually start the debug connector
 for the Wing IDE and attach it to the gump process, whereas the
 '--debug' option customizes the log verbosity gump will use.

 This command otherwise accepts the same arguments as the 'run'
 command.

The 'test' command

 Run pygump its unit tests.

 Usage:
 ./gump test [OPTIONS]

 Available options include:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -a, --annotate Page annotations
 -c, --clear Clear all .pyc and .pyo files in the project base and
 included paths
 -d, --debug Debug run - do not catch exceptions
 -q, --quiet Quiet
 -s, --stats Give coverage stats
 -v, --verbose Verbose.
 -l LOGDIR, --logdir=LOGDIR
 Directory to write annotation log files (for use with
 -a).
 Controlling Coverage Paths:
 These options are only necessary if your project layout deviates from
 what pylid expects.
 -b DIR, --base=DIR Project base directory. Can be passed multiple times.
 (Default: "..")
 -e DIR, --exclude=DIR
 Exclude path from coverage analysis. Can be passed
 multiple times. (Default: ".")
 -i DIR, --include=DIR
 Include path for analysis. Can be passed multiple
 times (Default: "..")

The 'pydoc' command

 Runs a pydoc server on port 1234.

 Usage:
 ./gump pydoc

 Visit http://localhost:1234/ to see the documentation it provides

This document was last generated on Thu Jul 7 12:57:08 CEST 2005. It can be generated using the command 'gump help generate-reference'

	Gump3CommandLineOptions

