
GumpInternals
GumpInternals

Processing Step #1: Constructing Memory Structures
The is loaded (via file/HTTP) and 'completed' into the GumpMetadata GumpModel
The is a tree of a workspace containing modules, which contain projectsGumpModel
Projects in the tree are linked (bi-directionally) via dependencies.

A is build using a pattern match expression against project names, which contains the build sequence [of modules/projects]. GumpRun

Processing Step #2 : Performing the Work

Packages

Packages are determined (and their state set to 'complete' or 'failed').

Updating from Source Control

For updates, the build sequence of modules is traversed, any in a good state are cvs|svn updated. Any failures are propogated (see StatePropoga
). tion

Build

The build sequence of projects is traversed, any in a good state have the following:

Pre-build steps

Create directories for <mkdir
Delete directories for <delete Note: Currently disabled for security.

Build steps

Build using script or ant (or maven). Classpath is determined/set.
State is set/propogated based of exit code.

Post-build steps

Check all outputs (jars/licenses) exist, or set state to failed.
Copy outputs to Jar repository
'List' certain files (maven log, junit reports, etc.)

Processing Step #3: Generating Results
RSS and Atom feeds are generated be walking the tree.
A results.xml is generated, by walking the tree.
Statistics are updated
Documentation (of a run) is generated using or text.Forrest
Nag e-mails are sent

https://cwiki.apache.org/confluence/display/GUMP/GumpMetadata
https://cwiki.apache.org/confluence/display/GUMP/GumpModel
https://cwiki.apache.org/confluence/display/GUMP/GumpModel
https://cwiki.apache.org/confluence/display/GUMP/GumpRun
#
https://cwiki.apache.org/confluence/display/GUMP/StatePropogation
https://cwiki.apache.org/confluence/display/GUMP/StatePropogation
http://xml.apache.org/forrest

	GumpInternals

