
AIP-21: Changes in import paths
Status

State Completed

Discussion Thread [VOTE] Changes in import paths

JIRA

 - Jira project doesn't exist or you don't have permission to view AIRFLOW-4733

it.

Created $action.dateFormatter.formatGivenString("yyyy-MM-dd", $content.getCreationDate())

In Release 2.0.0

Motivation
During the 4-year project development, the community made many decisions about the structure and principles of module creation. Some decisions
have been made by Airbnb and they no longer apply. Other recommendations were rejected because of the low recognition of the community.

The first chapter discusses the problems that concern modules. This chapter is written from a general perspective. Imagine that there are only
packages and modules in the project. Specific lines of code do not matter. The next chapter discusses the implementation details and ways of
introducing proposed improvements from the perspective of the source code. Here is the important full content of the files. Chapter “Executive
considerations” discusses how to introduce these rules into our codebase. You should look at this chapter from the perspective of the repository. At
the end of this document, there are conclusions and a summary.

Chapters containing considerations are divided into specific cases. Each case has a possible solution discussed. Included examples serve to show
specific cases and solutions In the real world, many problems overlap, so the solutions and examples also overlap. The examples try to be readable
for this purpose are limited only to a given case.

This document assumes you are already familiar with Airflow codebase and may change over time based on feedback.

Every time I write resources, I mean operators, hooks, sensors or another piece of code that is specific to an integration.

All proposed solutions are backwards compatible.

Status
Motivation
Final results (see voting below)
Target groups in the providers packages
Update to the original point D. (2019-10-11).
Update to include 1.10.* backportability and details about non-cloud-providers package (2019-11-16).
Architectural considerations

Case #1 airflow.contrib.{resources}
Case #2 git *_{operator/sensor}{/s}.py
Case #3 {aws/azure/gcp}_*
Case #4 Separate namespace for resources
Case #5 *Operator
Case #6 Other isolated cases

Implementation considerations
Case #7

Summary of the proposal

 - Jira project doesn't exist or you don't have permission to view AIRFLOW-4733

it.

This AIP has gone through many changes

This AIP has gone through many changes and it might be confusing trying to get the final conclusions from the sequence of events (it has
original voting + set of subsequent updates to it).

However the final agreement to the proposal has been nicely captured in https://github.com/apache/airflow/blob/master/CONTRIBUTING.
 and you should treat it as the current status.rst#naming-conventions-for-provider-packages

https://lists.apache.org/thread.html/4cedc94bee53ad908eee8333a56b58be8b5641881e73f69b97e436a9@%3Cdev.airflow.apache.org%3E
https://issues.apache.org/jira/browse/AIRFLOW-4733?src=confmacro
https://github.com/apache/airflow/blob/master/CONTRIBUTING.rst#naming-conventions-for-provider-packages
https://github.com/apache/airflow/blob/master/CONTRIBUTING.rst#naming-conventions-for-provider-packages

Voting
Reference

Final results (see voting below)
Case 1

What to
do with
the "
contrib"
folder

Case 2

Drop
modules
*_operator
suffix

Case 3 + Case 4

Grouping Cloud Providers operators/sensors/hooks

Case 5

*Operator
*Sensor
*Hook in
class name

Case 6

Isolated cases

Case 7

Deprecation method

A. Move
everything "c
ontrib"
"airflow"

A. Drop the
suffix.

Example:

airflow.
operator
.
gcp_bigt
able_op

.pyerator

becomes
airflow.
operator
.
gcp_bigt
able.py.

D. Group operators/sensors/hooks in airflow/providers/<PROVIDER>/operators
(sensors, hooks).

Each provider can define its own internal structure of that package. For example in case
of "google" provider the packages will be further grouped by "gcp", "gsuite", "core" sub-
packages.

In case of transfer operators where two providers are involved, the transfer operators
will be moved to "source" of the transfer. When there is only one provider as target but
source is a database or another non-provider source, the operator is put to the target
provider.

! The above decision has been updated during NOTE AIP-8 Split Providers into
. The rule we apply is "maintainability" rule - i.e. Separate Packages for Airflow 2.0

transfer operators are put in the provider, where stakeholders are more likely to have
interest in maintaining them.

Non-cloud provider ones are moved to airflow/operators(sensors/hooks).
Drop the prefix.

Examples:

AWS operator:

airflow/ /operators/sns_publish_operator.py contrib
becomes airflow/ /operators/providers/amazon/aws sns_publish.py

Google GCP operator:

airflow/ /operators/dataproc_operator.pycontrib
becomes airflow/ /operators/dataproc.pyproviders/ ogle/cloudgoo

Previously GCP-prefixed operator:

airflow/ operators//contrib bigtable_operator.py gcp_
becomes airflow/providers/google/ operators//cloud bigtable.py

Transfer from GCP:

airflow/ /operators/gcs_to_s3_operator.pycontrib becomes airflow/providers
/operators/gcs_to_s3.py/google/cloud

MySQL to GCS:

airflow/ /operators/mysql_to_gcs_operator.pycontrib becomes airflow/provid
/operators/ers/google/cloud mysql_to_gcs.py

SSH operator:

airflow/ operators//contrib ssh_operator.py
becomes airflow/operators/ssh.py

B. No change -
keep Operator
/Sensor suffix in
class name.

A. Make individual decisions of
renames for operators that do not
follow common conventions used for
other operators.

Consistency trumps compatibility.

Examples:

DataProcHadoopOperator

renamed to:

Data rocHadoopOperatorp

A. Native python method
(with better IDE
support and more flexible
but a bit more verbose)

 Target groups in the providers packages

Service Transfer

Funda
mental
s (no
change)

airflow.hooks.base_hook
airflow.hooks.dbapi_hook
airflow.models.baseoperator
airflow.sensors.base_sensor_operator
airflow.operators.branch_operator
airflow.operators.check_operator
airflow.operators.dagrun_operator
airflow.operators.dummy_operator
airflow.operators.generic_transfer
airflow.operators.latest_only_operator
airflow.operators.subdag_operator
airflow.sensors.external_task_sensor
airflow.sensors.sql_sensor
airflow.sensors.time_delta_sensor
airflow.sensors.time_sensor
airflow.contrib.sensors.weekday_sensor move to airflow.sensors
airflow.operators.bash_operator
airflow.contrib.sensors.bash_sensor
airflow.operators.python_operator
airflow.contrib.sensors.python_sensor

provide
rs

google

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#1airflow.contrib.{resources}
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#2git*_{operator/sensor}{/s}.py
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#3{aws/azure/gcp}_*
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#4Separatenamespaceforresources
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#5*Operator
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#6Otherisolatedcases
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#7
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-8+Split+Providers+into+Separate+Packages+for+Airflow+2.0
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-8+Split+Providers+into+Separate+Packages+for+Airflow+2.0

cloud airflow.gcp.hooks.automl, airflow.gcp.operators.automl
airflow.gcp.hooks.bigquery airflow.gcp.operators.bigquery
airflow.gcp.hooks.bigquery_dts airflow.gcp.operators.bigquery_dts
airflow.gcp.hooks.bigtable airflow.gcp.operators.bigtable
airflow.gcp.hooks.cloud_build airflow.gcp.operators.cloud_build
airflow.gcp.hooks.compute airflow.gcp.operators.compute
airflow.gcp.hooks.dlp airflow.gcp.operators.dlp
airflow.gcp.hooks.dataflow airflow.gcp.operators.dataflow
airflow.gcp.hooks.dataproc airflow.gcp.operators.dataproc
airflow.gcp.hooks.datastore airflow.gcp.operators.datastore
airflow.gcp.hooks.functions airflow.gcp.operators.functions
airflow.gcp.hooks.kms
airflow.gcp.hooks.kubernetes_engine airflow.gcp.operators.kubernetes_engine
airflow.gcp.hooks.mlengine airflow.gcp.operators.mlengine
airflow.gcp.hooks.cloud_memorystore airflow.gcp.operators.cloud_memorystore
airflow.providers.google.cloud.hooks.natural_language airflow.providers.google.cloud.
operators.natural_language
airflow.providers.google.cloud..hooks.pubsub airflow.providers.google.cloud..operators.
pubsub
airflow.gcp.hooks.spanner airflow.gcp.operators.spanner
airflow.gcp.hooks.speech_to_text airflow.gcp.operators.speech_to_text
airflow.gcp.hooks.cloud_sql airflow.gcp.operators.cloud_sql
airflow.gcp.hooks.gcs airflow.gcp.operators.gcs
airflow.gcp.hooks.cloud_storage_transfer_service airflow.gcp.operators.
cloud_storage_transfer_service
airflow.gcp.hooks.tasks airflow.gcp.operators.tasks
airflow.gcp.hooks.text_to_speech airflow.gcp.operators.text_to_speech
airflow.gcp.hooks.translate airflow.gcp.operators.translate
airflow.gcp.hooks.video_intelligence airflow.gcp.operators.video_intelligence
airflow.providers.google.cloud.hooks.vision

airflow.operators.cassandra_to_gcs, airflow.operators.adls_to_gcs, airflow.contrib.
operators.s3_to_gcs_operator, airflow.gcp.operators.cloud_storage_transfer_service,
airflow.operators.adls_to_gcs
airflow.contrib.operators.s3_to_gcs_operator,airflow.gcp.operators.
cloud_storage_transfer_service
airflow.operators.bigquery_to_bigquery
airflow.operators.bigquery_to_gcs
airflow.operators.bigquery_to_mysql
airflow.operators.cassandra_to_gcs
airflow.operators.gcs_to_bq
airflow.operators.gcs_to_gcs,airflow.gcp.operators.cloud_storage_transfer_service
airflow.operators.local_to_gcs
airflow.operators.mssql_to_gcs
airflow.operators.mysql_to_gcs
airflow.operators.postgres_to_gcs
airflow.operators.sql_to_gcs
airflow.operators.gcs_to_sftp

gsuite airflow.contrib.hooks.gdrive_hook airflow.gcp.hooks.gsheets airflow.contrib.operators.gcs_to_gdrive_operator

marketi
ng_plat
form

airflow.providers.google.marketing_platform.hooks.campaign_manager airflow.providers.
google.marketing_platform.operators.campaign_manager airflow.providers.google.
marketing_platform.sensors.campaign_manager airflow.providers.google.
marketing_platform.hooks.display_video airflow.providers.google.marketing_platform.
operators.display_video airflow.providers.google.marketing_platform.sensors.display_video
airflow.providers.google.marketing_platform.hooks.search_ads airflow.providers.google.
marketing_platform.operators.search_ads airflow.providers.google.marketing_platform.
sensors.search_ads

amazon

aws airflow.contrib.hooks.aws_dynamodb_hook
airflow.contrib.hooks.aws_glue_catalog_hook
airflow.contrib.hooks.aws_logs_hook
airflow.contrib.hooks.emr_hook
airflow.contrib.hooks.sagemaker_hook
airflow.contrib.operators.ecs_operator
airflow.contrib.operators.emr_add_steps_operator
airflow.contrib.operators.emr_create_job_flow_operator
airflow.contrib.operators.emr_terminate_job_flow_operator
airflow.contrib.operators.s3_copy_object_operator
airflow.contrib.operators.s3_delete_objects_operator
airflow.contrib.operators.s3_list_operator
airflow.contrib.operators.sagemaker_base_operator
airflow.contrib.operators.sagemaker_endpoint_config_operator
airflow.contrib.operators.sagemaker_endpoint_operator
airflow.contrib.operators.sagemaker_model_operator
airflow.contrib.operators.sagemaker_training_operator
airflow.contrib.operators.sagemaker_transform_operator
airflow.contrib.operators.sagemaker_tuning_operator
airflow.contrib.sensors.aws_glue_catalog_partition_sensor
airflow.contrib.sensors.emr_base_sensor
airflow.contrib.sensors.emr_job_flow_sensor
airflow.contrib.sensors.emr_step_sensor
airflow.contrib.sensors.sagemaker_base_sensor
airflow.contrib.sensors.sagemaker_endpoint_sensor
airflow.contrib.sensors.sagemaker_training_sensor
airflow.contrib.sensors.sagemaker_transform_sensor
airflow.contrib.sensors.sagemaker_tuning_sensor
airflow.operators.s3_file_transform_operator
airflow.providers.amazon.aws.hooks.athena
airflow.providers.amazon.aws.hooks.datasync
airflow.providers.amazon.aws.hooks.kinesis
airflow.providers.amazon.aws.hooks.lambda_function
airflow.providers.amazon.aws.hooks.redshift
airflow.providers.amazon.aws.hooks.s3
airflow.providers.amazon.aws.hooks.sns
airflow.providers.amazon.aws.hooks.sqs
airflow.providers.amazon.aws.operators.athena
airflow.providers.amazon.aws.operators.batch
airflow.providers.amazon.aws.operators.datasync
airflow.providers.amazon.aws.operators.sns
airflow.providers.amazon.aws.operators.sqs
airflow.providers.amazon.aws.sensors.athena
airflow.providers.amazon.aws.sensors.redshift
airflow.providers.amazon.aws.sensors.sqs
airflow.sensors.s3_key_sensor
airflow.sensors.s3_prefix_sensor

airflow.contrib.operators.hive_to_dynamodb, airflow.operators.
google_api_to_s3_transfer, airflow.contrib.operators.hive_to_dynamodb, airflow.
operators.redshift_to_s3_operator, airflow.operators.s3_to_hive_operator, airflow.
operators.s3_to_redshift_operator, airflow.contrib.operators.dynamodb_to_s3, airflow.
contrib.operators.s3_to_sftp_operator, airflow.contrib.operators.sftp_to_s3_operator,
airflow.operators.gcs_to_s3, airflow.contrib.operators.imap_attachment_to_s3_operator,
airflow.contrib.operators.mongo_to_s3, airflow.operators.google_api_to_s3_transfer,
airflow.operators.gcs_to_s3

micros
oft

azure airflow.contrib.hooks.wasb_hook airflow.contrib.operators.wasb_delete_blob_operator
airflow.contrib.sensors.wasb_sensor airflow.contrib.hooks.azure_container_instance_hook,
airflow.contrib.hooks.azure_container_registry_hook, airflow.contrib.hooks.
azure_container_volume_hook airflow.contrib.operators.
azure_container_instances_operator airflow.contrib.hooks.azure_cosmos_hook airflow.
contrib.operators.azure_cosmos_operator airflow.contrib.sensors.azure_cosmos_sensor
airflow.contrib.hooks.azure_data_lake_hook airflow.contrib.operators.adls_list_operator
airflow.contrib.hooks.azure_fileshare_hook,

airflow.contrib.operators.file_to_wasb, airflow.contrib.operators.
oracle_to_azure_data_lake_transfer

apache

cassan
dra

airflow.contrib.hooks.cassandra_hook airflow.contrib.sensors.cassandra_record_sensor,
airflow.contrib.sensors.cassandra_table_sensor

druid airflow.hooks.druid_hook airflow.contrib.operators.druid_operator,airflow.operators.
druid_check_operator

airflow.operators.hive_to_druid

hadoop airflow.hooks.hdfs_hook airflow.sensors.hdfs_sensor,
airflow.contrib.sensors.hdfs_sensor,

airflow.hooks.webhdfs_hook airflow.sensors.web_hdfs_sensor

hive airflow.hooks.hive_hooks airflow.operators.hive_operator,airflow.operators.
hive_stats_operator airflow.sensors.named_hive_partition_sensor,
airflow.sensors.hive_partition_sensor,airflow.sensors.metastore_partition_sensor

airflow.operators.mssql_to_hive, airflow.operators.s3_to_hive_operator, airflow.contrib.
operators.vertica_to_hive

pig airflow.hooks.pig_hook airflow.operators.pig_operator

pinot airflow.contrib.hooks.pinot_hook

spark airflow.contrib.hooks.spark_jdbc_hook,
airflow.contrib.hooks.spark_jdbc_script,airflow.contrib.hooks.spark_sql_hook,
airflow.contrib.hooks.spark_submit_hook airflow.contrib.operators.spark_jdbc_operator,
airflow.contrib.operators.spark_sql_operator,airflow.contrib.operators.spark_submit_operator

sqoop airflow.contrib.hooks.sqoop_hook airflow.contrib.operators.sqoop_operator

mysql airflow.operators.hive_to_mysql, airflow.contrib.operators.presto_to_mysql

jira airflow.contrib.hooks.jira_hook airflow.contrib.operators.jira_operator
airflow.contrib.sensors.jira_sensor

databri
cks

airflow.contrib.hooks.databricks_hook airflow.contrib.operators.databricks_operator

datadog airflow.contrib.hooks.datadog_hook airflow.contrib.sensors.datadog_sensor

dingding airflow.contrib.hooks.dingding_hook airflow.contrib.operators.dingding_operator

discord airflow.contrib.hooks.discord_webhook_hook airflow.contrib.operators.
discord_webhook_operator

clouda
nt

airflow.contrib.hooks.cloudant_hook

jenkins airflow.contrib.hooks.jenkins_hook airflow.contrib.operators.jenkins_job_trigger_operator

opsgen
ie

airflow.contrib.hooks.opsgenie_alert_hook airflow.contrib.operators.opsgenie_alert_operator

qubole airflow.contrib.hooks.qubole_hook,airflow.contrib.hooks.qubole_check_hook airflow.contrib.
operators.qubole_operator,airflow.contrib.operators.qubole_check_operator airflow.contrib.
sensors.qubole_sensor

salesfo
rce

airflow.contrib.hooks.salesforce_hook

segme
nt

airflow.contrib.hooks.segment_hook airflow.contrib.operators.segment_track_event_operator

slack airflow.hooks.slack_hook,airflow.contrib.hooks.slack_webhook_hook airflow.operators.
slack_operator,airflow.contrib.operators.slack_webhook_operator

snowfl
ake

airflow.contrib.hooks.snowflake_hook airflow.contrib.operators.snowflake_operator

vertica airflow.contrib.hooks.vertica_hook airflow.contrib.operators.vertica_operator airflow.contrib.operators.vertica_to_mysql

zendesk airflow.hooks.zendesk_hook

celery airflow.contrib.sensors.celery_queue_sensor

docker airflow.hooks.docker_hook airflow.operators.docker_operator,
airflow.contrib.operators.docker_swarm_operator

kubern
etes

airflow.contrib.operators.kubernetes_pod_operator

mssql airflow.hooks.mssql_hook airflow.operators.mssql_operator

mongo
db

airflow.contrib.hooks.mongo_hook airflow.contrib.sensors.mongo_sensor

mysql airflow.hooks.mysql_hook airflow.operators.mysql_operator

openfa
as

airflow.contrib.hooks.openfaas_hook

oracle airflow.hooks.oracle_hook airflow.operators.oracle_operator airflow.contrib.operators.oracle_to_oracle_transfer

paper
mill

airflow.operators.papermill_operator

postgr
es

airflow.hooks.postgres_hook airflow.operators.postgres_operator

presto airflow.hooks.presto_hook airflow.operators.presto_check_operator

redis airflow.contrib.hooks.redis_hook airflow.contrib.operators.redis_publish_operator airflow.
contrib.sensors.redis_pub_sub_sensor,airflow.contrib.sensors.redis_key_sensor

samba airflow.hooks.samba_hook airflow.operators.hive_to_samba_operator

sqlite airflow.hooks.sqlite_hook airflow.operators.sqlite_operator

imap airflow.contrib.hooks.imap_hook airflow.contrib.sensors.imap_attachment_sensor

ssh airflow.contrib.hooks.ssh_hook airflow.contrib.operators.ssh_operator

filesyst
em

airflow.contrib.hooks.fs_hook airflow.contrib.sensors.file_sensor

sftp airflow.contrib.hooks.sftp_hook airflow.contrib.operators.sftp_operator airflow.contrib.
sensors.sftp_sensor

ftp airflow.contrib.hooks.ftp_hook airflow.contrib.sensors.ftp_sensor

http airflow.hooks.http_hook airflow.operators.http_operator airflow.sensors.http_sensor

grpc airflow.contrib.hooks.grpc_hook airflow.contrib.operators.grpc_operator

smtp airflow.operators.email_operator

jdbc airflow.hooks.jdbc_hook airflow.operators.jdbc_operator

winrm airflow.contrib.hooks.winrm_hook airflow.contrib.operators.winrm_operator

Update to the original point D. .(2019-10-11)

During implementation of AIP-23 we found that the original decision about grouping operators was not the best and did not cover all the scenarios.
Therefore we updated the rules as follows:

Grouping by cloud provider should be done in "airflow/ " package (previously it was directly in "airflow"providers
Each provider can have different internal structure, potentially grouping the operators in sub-packages. For example in case of "google"
provider the packages will be further grouped by "gcp", "gsuite", "core" sub-packages.
In case of transfer operators where two providers are involved, the transfer operators will be moved to (NOTE it's been changed to "source"
"target" in subsequent Update) of the transfer. When there is only one provider as target but source is a database or another non-provider
source, the operator is put to the target provider.

Update to include 1.10.* backportability and details about non-cloud-
providers package (2019-11-16).
In the light of coming Airflow 2.0 release the community decided there is a need to make it easier to migrate from Airflow 1.10 to the upcoming 2.0
release. Airflow 2.0 is - by definition - not backwards-compatible with 1.10.* series. There are a number of incompatibilities that are introduced - in
core, database, concepts but also in parameters of a number of operators integrating with external services/software. DAGs written for Airflow 1.10.*
might not work out-of-the-box in Airflow 2.0. We have not yet figured out if we are going to provide some automated migration, but we can provide a
mechanism to switch to Airflow 2.0 "provider" set of operators and hooks even when still running Airflow 1.10. That can make migration process easier
as organisation doing the migration might do it in steps. There are some organisations that still use python 2 even though Airflow 2.0 supports only
python 3.5+ (possibly 3.6+ in the final 2.0 release). We figured out that most of the new/updated operators to be released in airflow 2.0 which were
not cherry-picked to Airflow 1.10 are still runnable in Airflow 1.10. and you should be able to start using those operators in Airflow 1.10 in parallel to old
operators. We decided to move most of the non-core operators to new packages (all inside "providers" package and release them as separate
packages that will be installable in Python 3.5+ Airflow 1.10* releases). POC for that is available here:

https://github.com/apache/airflow/pull/6507

Therefore the migration process might look as follows.

 (1) Python 2.7 + Airflow 1.10.* (2) Python 3.6 + Airflow 1.10.* (3) Python 3.6 + Airflow 1.10.* + switch to using "providers" operators (4) Python 3.6 +
Airflow 2.0

Switching to the new "providers" operators can be mostly automated and it can be done incrementally for the DAGs a company has (we can provide
some scripts for that). Each of the steps can be done separately in it's own pace.

This will make it easier for companies to move to Airflow 2.0 as well as it might provide an early testing ground for all the operators/hooks/sensors
which are only present in Airflow 2.0 and have incompatible changes.

The list of all Airflow operators/sensors/hooks is above in target_groups

Architectural considerations
It is based on widely accepted rules, and also shows cases when these rules are not followed. I will also show ideas for improving these principles.

Case #1 airflow.contrib.{resources}

There should be one-- and preferably only one --obvious way to do it.

Tim Peters, The Zen of Python

Currently, resources are located in two places:

airflow.{resource_type}

airflow.contrib.{resource_type}

In the first place are resources that were originally maintained by Airbnb. However, they have been transferred to Apache and Airbnb is not
responsible for their maintenance. The community is responsible for maintaining them. In the second place are operators that are maintained by the
community from the beginning until now. Currently, all new resources are added only to the second place. The changes and development of the first
place are strictly limited.

There is currently no reason for this type of division. All resources should be in one place.

Solution A:

We should move all the resources from the first place to the second. All resources will be located in airflow.{hooks/operators/sensors/example_dags}.

Advantages Disadvantages

https://github.com/apache/airflow/pull/6507

- resources are located in one place (and one place only). No need to check
multiple locations for docs for example.

- no confusion for new contributors whether their work needs to be
managed differently. (New contributors shouldn’t wonder if there is a
difference between their work and non-contrib work. Because there shouldn’t
be one!)

- resources moved from contrib to core has to be tested before
moved. Outdated hooks/operators need to be updated or
removed. Unit tests for all need to be added if it doesn’t already
exists.

Solution B:

Move all the well-tested and maintained resources to the core for e.g GCP resources are well-tested with good documentation. All the new resources
need to be first added to contrib folder and once they reach “maturity” they can be moved to core. We need to define what is that maturity. Contrib
resources would be analogous to beta features in a product. We should also consider changing the words "contrib" to "incubator" in this situation.

Advantages Disadvantages

- resources in core can be trusted by people and contributors take full
responsibility of those resources.

- resources in contrib are subject to change.

- resources needs to be maintained at 2 places and can be a source of
confusion for new contributors.

Solution C:

No change.

Case #2 git *_{operator/sensor}{/s}.py
Currently, the import takes the following format:

airflow{.contrib/}.operators.*_operator

There is information redundancy here. There is no need to use the word "operator" twice

It is worth mentioning that the word “operator” also appears in the class name

Solution A:

The import should take the following format:

airflow{.contrib/}.operators.*

Suffix “_operator” should be dropped

Example:
File airflow/contrib/operators/gcp_bigtable_operator.py should be moved to airflow/contrib/operators/gcp_bigtable.py.

Advantages Disadvantages

- Shorter name, but still focussing on the essential task of the class (no information loss) -

Solution B:

No change

Advantages and disadvantages are analogous to solution A.

Case #3 {aws/azure/gcp}_*
With the development of integration for the largest cloud providers, a large part of new files received a prefix, which is assigned to each of them. For
example, for Google Cloud Platform it is "gcp". Google mentioned the practice even in official recommendations[1]. Not all files follow this rule. Ansible
also uses similar structure.

Solution A:

The prefix can be completely dropped. Major provider can get a separate sub-module for each type of resource.

Operators that integrate with two services will not change.

Example:
File airflow/contrib/operators/gcp_bigtable_operator.py should be moved to airflow/contrib/operators/gcp/bigtable_operator.py.

The package format will look like this:
airflow/{contrib/}{resource_type}/{supplier/}bigtable_operator.py

Advantages Disadvantages

- shorter name, but still focussing on the essential task of the
class (no information loss)

- users only need to look at their _supplier_ package instead
of lot of other _supplier_‘s services at once. (Most users
probably use only one supplier at a time)

(This could also speed up navigating through the
documentation for users depending on how the
documentation is structured)

it’s a bit easier to find files when the file name contains relevant gcp_* for
example in most IDE’s. This is however very weak argument as most of the
IDEs will also support gcp/* as prefix when looking for a file

Solution B:

The prefix will be completed for incompatible files

Example:
 File /airflow/contrib/operators/sns_publish_operator.py should be moved to /airflow/contrib/operators/aws_sns_publish_operator.py

File /airflow/contrib/operators/dataproc_operator.py should be moved to /airflow/contrib/operators/gcp_dataproc_operator.py

Operators that integrate with two services will not change.

Solution C:

This solution has been reported by ashb

The prefix can be completely dropped. Major provider will get their own sub-module, which will contain all types of resources.

This change forces the adoption of a solution A from Case #1 airflow.contrib.{resources} at the same time.

The package format will look like this:.
airflow/integration/{supplier}/{resource_type}/bigtable_operator.py

Advantages Disadvanta
ges

This way the integration package contains everything from a supplier and you won’t have multiple same supplier packages for hooks,
operators, macros, etc.

Moreover it would be simpler to move such an integration to a separate repository. (See AIP-8)

-

Solution D:

The prefix can be completely dropped. Major provider will get their own sub-module, which will contain all types of resources. Other operators will be
moved to one module (ex. core).

This change forces the adoption of a solution A from Case #1 airflow.contrib.{resources} at the same time.

The package format will look like this:.
airflow_integration/{resource_type}/gcp_bigtable_operator.py

Example:
 File /airflow/contrib/operators/sns_publish_operator.py should be moved to /airflow_integration/aws/operators/aws_sns_publish_operator.py

File /airflow/operators/bash_operator.py should be moved to /airflow_integration/core/bash_operator.py

Case #4 Separate namespace for resources

Namespaces are one honking great idea -- let's do more of those!

Tim Peters, The Zen of Python

Note - we do not move the namespaces out. It's mereWe can create a new namespace for all resources. We will not take advantage of all the
possibilities that it offers, but in the future it will be possible to easily switch to a separate package for group of resource.

This solution should also be considered taking into account the acceptance of solution D from Case #3 {aws/azure/gcp}_*

https://docs.google.com/document/d/1F8zve5S78DXcjpPttW89HnqT0M0iKjT6fo9jX57Ef6A/edit#heading=h.3pgl0u2k7s6z
https://docs.google.com/document/d/1F8zve5S78DXcjpPttW89HnqT0M0iKjT6fo9jX57Ef6A/edit#heading=h.3pgl0u2k7s6z
https://packaging.python.org/guides/packaging-namespace-packages/
https://docs.google.com/document/d/1F8zve5S78DXcjpPttW89HnqT0M0iKjT6fo9jX57Ef6A/edit#heading=h.pefqoftvtoa8

Example of a project that uses a separate namespace: https://github.com/googleapis/google-cloud-python

Note: This change does not introduce separated packages for group of resources. It tries to retain only compatibility. Details are available: AIP-8 Split
Hooks/Operators into Separate Packages by Tim Swast.

The package format will look like this:.
airflow_resources/{category}/{resource_type}/bigtable_operator.py

Solution #A:

We can introduce namespaces.

Advantages Disadvantages

We will avoid changing import paths in the future -

Solution #B:

We reject introduction namespaces.

Advantages and disadvantages are analogous to solution A

Note that grouping remains as if in namespaces (but this is merely a package not a separate namespace),

Case #5 *Operator
Class name does not need suffix "Operator"

Solution A:

We can delete the suffix “Operator” from the class name

Example:
Class GcpTransferServiceJobDeleteOperator should be renamed to GcpTransferServiceJobDelete.

Advantages Disadvantages

- Shorter name, but still focussing on the essential task of the class (no information loss) -

Solution B:

No change

Advantages and disadvantages are analogous to solution A.

Case #6 Other isolated cases
There are other random cases of inconsistencies in the naming of classes. It is necessary to review the list of all classes and prepare a plan of
change. Support from major cloud service providers will be useful.

For example:
Google Dataproc operators:

Current name Proposition of new name

DataProcHadoopOperator DataprocHadoopOperator

DataProcHiveOperator DataprocHiveOperator

DataProcPigOperator DataprocPigOperator

DataProcPySparkOperator DataprocPySparkOperator

DataProcSparkOperator DataprocSparkOperator

DataProcSparkSqlOperator DataprocSparkSqlOperator

DataprocClusterCreateOperator No change

DataprocClusterDeleteOperator No change

https://github.com/googleapis/google-cloud-python
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=100827303
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=100827303
https://raw.githubusercontent.com/apache/airflow/master/docs/code.rst

1.
2.

DataprocClusterScaleOperator No change

DataprocWorkflowTemplateBaseOperator No change

DataprocWorkflowTemplateInstantiateInlineOperator No change

DataprocWorkflowTemplateInstantiateOperator No change

GoogleCloudStorageToS3Operator GcsToS3Operator

This document does not analyze such cases. It can be one area of analysis by other groups of people ex. employees of the largest cloud service
providers.

Any such change must be considered individually when accepting pull requests. Each change must be consistent with the recommendations made
after voting on the changes in this document.

Implementation considerations

Case #7

Developer perspective - source code, and console view from both methods is available: https://imgur.com/a/mRaWpQm

Repository with samples: https://github.com/mik-laj/airflow-deprecation-sample

Solution #A native python

Advantages Disadvantages

Its supported by IDE.

More flexible - we can add a link to the documentation

Files must exist in the project - temporary mess.

More code in the project (226 characters. vs 78 character = +189%).

Sample PR: https://github.com/apache/airflow/pull/4667

Solution #B zope.deprecation/sys.modules hack

Solution proposed by @ashb

Advantages Disadvantages

Less boilerplate code. It is NOT supported by IDE.

Files must exist in the project - temporary mess.

No configuration options

Executive considerations
We can introduce the proposed changes in two ways:

as one commit;
as many commits for each group of operators;

The first method will be faster to perform, but finding one bug (if it would appear) in such a patch will be very difficult. The introduced change should,
therefore, be made a series of corrections.

Each change should contain one commit. Each PR and commit should be described in the format: “[AIRFLOW-XXX]”

Summary of the proposal
Green are the voted options

https://imgur.com/a/mRaWpQm
https://github.com/mik-laj/airflow-deprecation-sample
https://github.com/apache/airflow/pull/4667

Choice Case 1

What to
do with
the "
contrib"
folder

Case 2

Drop
modules
*_operator
suffix

Case 3 + Case 4

Grouping Cloud Providers operators
/sensors/hooks

Case 5

*Operator *Sensor
*Hook in class
name

Case 6

Isolated cases

Case 7

Deprecation
method

A Move
everything "co
ntrib" "airflow"

Drop the suffix.

Example:

airflow.
operator
.
gcp_bigt
able_op

.erator
py
becomes
airflow.
operator
.
gcp_bigt
able.py.

Keep operators/sensors/hooks in airflow
/operators(sensors, hooks) and keep/add
prefixes in file names.

airflow/ /operatorscontrib
/sns_publish_operator.py
becomes airflow/operators/ sns_puaws_
blish_operator.py

airflow/ /operatorscontrib
/dataproc_operator.py
becomes dataprogcp_airflow/operators/

 c_operator.py

airflow/ hooks//contrib gcp_bigtable_hoo
k.py
becomes airflow/hooks/gcp_bigtable_ho
ok.py
airflow/ operators//contrib ssh_operator.
py
becomes airflow/operators/ssh_operator
.py

Remove the Operator
suffix from class name.

Examples:

GcpTransferServi
ceJobDeleteOper

 rename to ator G
cpTransferServic
eJobDelete

 BashOperator
rename to Bash

Make individual decisions of
renames for operators that do
not follow common conventions
used for other operators.

Consistency trumps
compatibility.

Examples:

DataProcHadoopOperator

renamed to:

Data rocHadoopOperatorp

Native python method
(with better IDE
support and more
flexible but a bit more
verbose)

B Move well
tested code "c
ontrib"
"airflow"

Rename
"contrib" to "inc
ubator" for
less-well
tested code.

No change.

Example:

 gcp_big
table_op

.erator
py
stays gc
p_bigtabl
e_operat

.pyor

Group operators/sensors/hooks in airflow
/operators(sensors, hooks)/ Non-<PROVIDER>.
cloud provider ones are moved to airflow
/operators(sensors/hooks). Drop the prefix.

airflow/ /operatorscontrib
/sns_publish_operator.py
becomes airflow/operators/ sns_pubaws/
lish_operator.py

airflow/ /operatorscontrib
/dataproc_operator.py
becomes dataprocairflow/operators/gcp/

 _operator.py

airflow/ operators//contrib bigtable_gcp_
operator.py
becomes airflow/operators/gcp/bigtable
_operator.py

airflow/ operators//contrib ssh_operator.
py
becomes airflow/operators/ssh_operator
.py

No change - keep
Operator/Sensor suffix
in class name.

Avoid renaming operators due
to better backwards
compatibility.

Use zope.deprecation
(less IDE support, less
verbose, less flexibility)

C No change Group operators/sensors/hooks in airflow
/operators(sensors, hooks) Non-/<PROVIDER>.
cloud provider ones are moved to airflow
/operators(sensors/hooks). Keep the prefix.

airflow/ /operatorscontrib
/sns_publish_operator.py
becomes airflow/operators/ snsaws/aws_
_publish_operator.py

airflow/ /operatorscontrib
/dataproc_operator.py
becomes dat/gcp/gcp_airflow/operators

 aproc_operator.py

airflow/ operators//contrib gcp_bigtable_
operator.py
becomes airflow/operators/ /gcp_gcp bigt
able_operator.py

airflow/ operators//contrib ssh_operator.
py
becomes airflow/operators/ssh_operator
.py

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#1airflow.contrib.{resources}
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#2git*_{operator/sensor}{/s}.py
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#3{aws/azure/gcp}_*
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#4Separatenamespaceforresources
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#5*Operator
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#6Otherisolatedcases
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#7

D Group operators/sensors/hooks in airflow
/operators(sensors, hooks). Non-/<PROVIDER>

cloud provider ones are moved to airflow
/operators(sensors/hooks). Drop the prefix.

airflow/ /operatorscontrib
/sns_publish_operator.py
becomes airflow/ /operators/aws sns_pub
lish_operator.py

airflow/ /operatorscontrib
/dataproc_operator.py
becomes airflow/ /operatorsgcp

 /dataproc_operator.py

airflow/ operators//contrib bigtable_gcp_
operator.py
becomes airflow/ operators//gcp bigtable
_operator.py

airflow/ operators//contrib ssh_operator.
py
becomes airflow/operators/ssh_operator
.py

E Group operators/sensors/hooks in airflow
/operators(sensors, hooks). Non-/<PROVIDER>

cloud provider ones are moved to airflow
/operators(sensors/hooks). .Keep the prefix

airflow/ /operatorscontrib
/sns_publish_operator.py
becomes airflow/ /operators/aws_aws sns
_publish_operator.py

airflow/ /operatorscontrib
/dataproc_operator.py
becomes airflow/ /operators/ datgcp gcp_

 aproc_operator.py

airflow/ operators//contrib gcp_bigtable_
operator.py
becomes airflow/ operators/gcp_/gcp bigt
able_operator.py

airflow/ operators//contrib ssh_operator.
py
becomes airflow/operators/ssh_operator
.py

Voting
Feel free to add your votes below:

Person Binding Case 1

What to do
with the "
contrib" folder

Case 2

Drop modules
*_operator
suffix

Case 3 + Case 4

Grouping Cloud
Providers operators
/sensors/hooks

Case 5

*Operator *Sensor *Hook
in class name

Case 6

Isolated cases

Case 7

Deprecation
method

Jarek
Potiuk

Yes A: Move
everything "contrib"
 "airflow"

A.
gcp_bigtable_operat
or.py gcp_bigtable.
py

D. airflow/contrib/operators/
bigtable_operator.py gcp_

 airflow /operators/gcp
/bigtable_operator.py

B. No changes. Keep *Operator
*Sensor *Hook in class name

A. Rename
isolated cases for
consistency.

A. Native python
with better IDE
integration.

Ash Berlin-
Taylor

Yes A A D B - it's clearer at call site (task
 vs = XOperator() task =

)X()

No opinion No strong opionin

Fokko
Driesprong

Yes A A A B A A

Felix
Uellendall

No A A D B A No opinion

Kamil
Bregula

Yes A A D B A A

Kaxil Naik Yes A A D B A A

Bas
Harenslak

Yes A A A B A A

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#1airflow.contrib.{resources}
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#2git*_{operator/sensor}{/s}.py
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#3{aws/azure/gcp}_*
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#4Separatenamespaceforresources
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#5*Operator
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#6Otherisolatedcases
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#7
https://cwiki.apache.org/confluence/display/~jarek.potiuk
https://cwiki.apache.org/confluence/display/~jarek.potiuk
https://cwiki.apache.org/confluence/display/~ash
https://cwiki.apache.org/confluence/display/~ash
https://cwiki.apache.org/confluence/display/~fokko
https://cwiki.apache.org/confluence/display/~fokko
https://cwiki.apache.org/confluence/display/~feluelle
https://cwiki.apache.org/confluence/display/~feluelle
https://cwiki.apache.org/confluence/display/~kamil.bregula
https://cwiki.apache.org/confluence/display/~kamil.bregula
https://cwiki.apache.org/confluence/display/~kaxilnaik
https://cwiki.apache.org/confluence/display/~basharenslak
https://cwiki.apache.org/confluence/display/~basharenslak

Philippe
Gagnon

No A A D B A A

Any strong "vetos" on any of the answers please record it here with justification:

Person Binding Case 1

What to
do with
the "
contrib"
folder

Case 2

Drop
modules
*_operator
suffix

Case 3

Separate out module's
Cloud Provider
prefixes (gcp/aws
/azure) to packages

Case 4

Introduce separate
namespaces for different
resources

Case 5

*Operator
*Sensor
*Hook in
class name

Case 6

Isolated
cases

Case 7

Deprecation
method

Ash Berlin-
Taylor

Vetoing A with the prefix of airflow
 , but don't object to _resources ai

 grouping.rflow.gcp.operator.x

Original votes on Case 3/Case 4:

Case 3

Separate out module's Cloud
Provider prefixes (gcp/aws
/azure) to packages

Case 4

Introduce separate namespaces for different resources

Jarek
Potiuk

C. gcp_bigtable_operator.py gcp
/operators/bigtable.py

B. No namespaces introduction.

Ash
Berlin-
Taylor

No opinion

Fokko
Driesprong

B B

Felix
Uellendall

C B

Kamil
Bregula

C B

Daniel
Standish

Kaxil Naik C A - airflow.gcp.operator.*

It will make it more organised. Anyone willing to find out Airflow
support for a particular cloud provider would just need to look
into a single folder.

Chen Tong

Bas
Harenslak

B B

The Voting mechanism:

Voting will take place till 6pm CEST (5 pm BST, 9am PST) .Tuesday 30 Jul 2019

After the choice, the final consistent set of choices will be announced (taking into account majority of binding vote, also including potential vetos and
consistency between the choices. Non-binding votes will be taken into account in case there is a draw. The final set of choices will be announced at de

 after the voting completes.vlist thread

Unless there is a veto raised to the final proposal, the final proposal is accepted by on at 6pm CEST (5 pm Lazy Consensus Friday 02 Aug 2019
BST, 9am PST).

Reference
. 2018. GCP Service Airflow Integration Guide. [ONLINE] Available at: fenglu@google.com https://lists.apache.org/thread.html

. [Accessed 8 February 2019]./e8534d82be611ae7bcb21ba371546a4278aad117d5e50361fd8f14fe@%3Cdev.airflow.apache.org%3E

https://cwiki.apache.org/confluence/display/~pgag
https://cwiki.apache.org/confluence/display/~pgag
https://cwiki.apache.org/confluence/display/~ash
https://cwiki.apache.org/confluence/display/~ash
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#3{aws/azure/gcp}_*
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-21%3A+Changes+in+import+paths#AIP-21:Changesinimportpaths-Case#4Separatenamespaceforresources
https://cwiki.apache.org/confluence/display/~jarek.potiuk
https://cwiki.apache.org/confluence/display/~jarek.potiuk
https://cwiki.apache.org/confluence/display/~ash
https://cwiki.apache.org/confluence/display/~ash
https://cwiki.apache.org/confluence/display/~ash
https://cwiki.apache.org/confluence/display/~fokko
https://cwiki.apache.org/confluence/display/~fokko
https://cwiki.apache.org/confluence/display/~feluelle
https://cwiki.apache.org/confluence/display/~feluelle
https://cwiki.apache.org/confluence/display/~kamil.bregula
https://cwiki.apache.org/confluence/display/~kamil.bregula
https://cwiki.apache.org/confluence/display/~kaxilnaik
https://cwiki.apache.org/confluence/display/~cixuuz
https://cwiki.apache.org/confluence/display/~basharenslak
https://cwiki.apache.org/confluence/display/~basharenslak
https://lists.apache.org/thread.html/4cedc94bee53ad908eee8333a56b58be8b5641881e73f69b97e436a9@%3Cdev.airflow.apache.org%3E
https://lists.apache.org/thread.html/4cedc94bee53ad908eee8333a56b58be8b5641881e73f69b97e436a9@%3Cdev.airflow.apache.org%3E
https://community.apache.org/committers/lazyConsensus.html
mailto:fenglu@google.com
https://lists.apache.org/thread.html/e8534d82be611ae7bcb21ba371546a4278aad117d5e50361fd8f14fe@%3Cdev.airflow.apache.org%3E
https://lists.apache.org/thread.html/e8534d82be611ae7bcb21ba371546a4278aad117d5e50361fd8f14fe@%3Cdev.airflow.apache.org%3E

	AIP-21: Changes in import paths

