
Coding standards
Coding Standards
This page describes the standards used for Apache Geronimo code (java, xml, whatever). Code is read by a human being more often than it is actually
written by a human being, make the code a pleasure to read.

In this doc you will find:

Indentation
Java
XML

Interfaces
Exceptions
Package Naming
Imports

IDE Auto-Formatting
JavaDoc Tags
Unit Test Cases
Logging

Levels
Example

Abbreviations and Acronyms in methods/classes/interfaces' names
GBean attribute and reference naming convention

In addition, check the wiki for details on and .Developing Geronimo in Eclipse Subversion Client Configuration

Indentation

Java

Lets follow Sun's coding standard rules which are pretty common in Java.

http://java.sun.com/docs/codeconv/

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

4 characters indentation
No tabs please!

Correct brace style:

http://cwiki.apache.org/GMOxDEV/developing-geronimo-in-eclipse.html
http://cwiki.apache.org/GMOxDEV/subversion-client-configuration.html
http://java.sun.com/docs/codeconv/
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

public class Foo {
 public void foo(boolean a, int x, int y, int z) {
 do {
 try {
 if (x > 0) {
 int someVariable = a ? x : y;
 } else if (x < 0) {
 int someVariable = (y + z);
 someVariable = x = x + y;
 } else {
 for (int i = 0; i < 5; i++) {
 doSomething(i);
 }
 }

 switch (a) {
 case 0:
 doCase0();
 break;
 default:
 doDefault();
 }
 } catch (Exception e) {
 processException(e.getMessage(), x + y, z, a);
 } finally {
 processFinally();
 }
 } while (true);

 if (2 < 3) {
 return;
 }

 if (3 < 4) {
 return;
 }

 do {
 x++
 } while (x < 10000);

 while (x < 50000) {
 x++;
 }

 for (int i = 0; i < 5; i++) {
 System.out.println(i);
 }
 }

 private class InnerClass implements I1, I2 {
 public void bar() throws E1, E2 {
 }
 }
}

XML

Use 4 characters. This is to allow IDEs such as Eclipse to use a unified formatting convention
No tabs please!

Interfaces

All methods of an interface are public abstract, therefore it is not necessary to specify public abstract modifiers. Similarly all fields are public static final.

However this behavior works best with most tools and IDEs and seems to be common practice so we see no reason to disallow this practice. e.g:

public interface MyInterface {
 public static final int MY_INTEGER = 0;

 public abstract void doSomething();
}

This has the added advantage that the interface can be converted into an abstract class (and copy and paste individual definitions) without changing
anything.

Preferably add public/static/final to constants, and public/abstract to methods, but it's not mandatory. However, if it's there, don't take it out.

Exceptions

A situation is only exceptional, if the program can not handle it with reasonably effort. Wrong input data should be an expected situation of the
regular code, that could be handled gracefully.
The intention of exception-handling is to separate real error-handling from the regular part of the code, so don't force the caller to mix it with
unnecessary exceptions.
Only if your code really has a problem to continue e.g., when a parameter is invalid, feel free to throw an exception!
Do NOT throw an exception, if you only suppose the caller of your code could have a problem with a special result. Try to return a special result
value instead e.g., null, and let the caller decide with a regular if-else-statement. If the caller really has a problem, HE WILL throw an exception on
his own.
But if your code throws an exception, even though it has no real problem and it could continue without an exception and return a special result
value, you forestall the decision of the caller, whether the special result is really an error or not.
If you throw an exception, where the caller would decide that it is no error in the context of the caller, you force the caller to write an exception
handler in his regular part or to abort i.e., you force the caller to mix regular code with exception handling. That is the opposite of the intentention
of exception handling.
Bad example:
java.lang.Class.forName(String) throws ClassNotFoundException
In most programs/situations it is an error if this method does not find the class, therefore it throws an exception and forestalls the decision of the
caller.
But maybe there is a program that should check a list of class names, whether the classes are present or not. Such a program is forced to mix its
regular code with error handling of an exception, that is no error at all in that context.
The method should return a special result value instead: null. Many callers of that method have expected that situation and therefore are not in an
unexpected situation/exceptional state. They could decide the situation on their own.
Only throw checked exceptions (not derived from), if the caller has a chance to handle it.RuntimeException
Exceptions that signal programming errors or system failures usually cannot be handled/repaired at runtime -> unchecked exception.
If your code really has a problem to continue e.g., when a parameter is invalid, throw an unchecked exception (derived from)RuntimeException
and do NOT throw a checked exception, because if not even your code can handle the problem, in the very most cases the caller has no chance
to handle the problem, too. Instead there maybe somebody somewhere in the highest layers who catches all 's, logs them RuntimeException
and continues the regular service.
Only if it is not possible to return special result values cleanly, use checked exceptions to force the caller to decide the situation. The caller should
deescalate the situation by catching and handling one or more checked exceptions, e.g. with special result values(?) or by escalating with an
unchecked exception, because the situation is an error, that can not be handled.
Checked exceptions are an official part of the interface, therefore do not propagate checked exceptions from one abstraction layer to another,
because usually this would break the lower abstraction. E.g. do not propagate SQLException to another layer, because SQLExceptions are an
implementation detail, that may change in the future and such changes should not affect the interfaces and their callers.
Never throw or . Use either , or NullPointerException RuntimeException IllegalArgumentException NullArgumentException
(which is a subclass of anyway). If there isn't a suitable subclass available for representing an exception, create IllegalArgumentException
your own.

Package Naming

Package names are lowercase.
Package names should only contain alpha-numberic characters.
Package names should be suffixed with the name of the module in which they are defined

For example, if the module name is , then the base package name should be .common org.apache.geronimo.common

Note: This is more of a than a , as some modules simply can not follow this convention, but where applicable they should.guideline rule

Imports

Should be fully qualified e.g. and not import java.util.Vector java.util.*
Should be sorted alphabetically, with , then packages listed first, and then other packages sorted by package name.java javax

IDE Auto-Formatting

Eclipse users can
use to organize importsSource -> Organise Imports

use to format code (please make sure you are using spaces instead of tabs. See for Source -> Format Developing Geronimo in Eclipse
details)
IntelliJ users can
use to organize importsTools -> Organise Imports
use to format code (uses the code style setting in IDE options)Tools -> Reformat code

JavaDoc Tags

@version Should be: @version $Revision$ $Date$

@author Should not be used in source code at all.

Unit Test Cases

Use the naming scheme for unit tests.*Test.java
Do not define or constructor methods, the build system will automatically do the right thing without them.public static Test suite()

Logging

Log as much as necessary for someone to figure out what broke
Use SLF4J rather than raw or org.slf4j.Logger Log4j JCL
Do not log throwables that you throw - leave it to the caller
Use flags to avoid string concatenation for and debug trace
Use SLF4J varargs {} expansion
Cache flags (especially for) to avoid excessive callstrace isTraceEnabled()

Levels

Use level for detailed/diagnostic loggingtrace
Use level for things an application developer would need to knowdebug
Use level for things an administrator would need to knowinfo
Use level for things indicating an application or transient problemwarn
Use level for things indicating a problem with the server itselferror

Example

private final Logger log = LoggerFactory.getLogger(getClass());

public void doSomeStuff(Stuff stuff) throws StuffException {
 try {
 log.trace("About to do stuff: {}", stuff);
 stuff.doSomething();
 log.trace("Did some stuff");
 } catch (BadException e) {
 // don't log - leave it to caller
 throw new StuffException("Something bad happened", e);
 } catch (IgnorableException e) {
 // didn't cache this as we don't expect to come here a lot
 if (log.isDebugEnabled()) {
 log.debug("Ignoring problem doing stuff " + stuff, e);
 }
 }
}

Abbreviations and Acronyms in methods/classes/interfaces' names

Abbreviations/acronyms are all written in capitals in methods/classes/interfaces' names.

public final class J2EELoader {

 public static EJBRef[] loadEJBRefs(Element parent) {
 //...
 }

}

http://cwiki.apache.org/GMOxDEV/developing-geronimo-in-eclipse.html#DevelopingGeronimoinEclipse-CodeFormatting

GBean attribute and reference naming convention

The current convention is for attributes to follow Java variable naming conventions (i.e., lower case first character camel cased after) and for references to
follow Java class naming conventions (i.e., capital first character camel cased after).

	Coding standards

