
ServiceManagerRelease
Few things generate so much controversy as the release() method of the ServiceManager. Let's take a look at a few of the common comments made (we
see these periodically):

try{}finally{release} is a PITA
Yes it is. It is the price you pay for having a rich set of component lifestyles available to you automagically - we need to deal with all components as if they
have a rich lifestyle, since the lifestyle is not exposed to the client (which is a Good Thing).

Note there's several things you can do to make this stuff easier. Consider adopting a code convention where you have private members with a ms_ (or
something, for "My Service") prefix, then an abstract base class which implements dispose() and will release all those private members, then call super.
dispose() as the last method inside your child class dispose() (if any):

 public abstract class AbstractServiceDisposer // UNTESTED CODE SKETCH
 extends AbstractLogEnabled
 implements Disposable, Serviceable
{
 private ServiceManager m_sm;

 public void service(ServiceManager sm)
 {
 m_sm = sm;
 }

 protected ServiceManager getServiceManager()
 {
 return m_sm;
 }

 public void dispose()
 {
 try
 {
 Field[] fields = this.getClass().getDeclaredFields();
 for(int i = 0; i < fields.length; i++)
 {
 try
 {
 field = fields[i];
 if(field.getName().startsWith("ms_"))
 m_sm.release(field.get(this));
 }
 catch(IllegalArgumentException iae)
 {
 // won't happen
 }
 catch(IllegalAccessException iace)
 {
 getLogger().warn("Can't release all my services: " +
 "SecurityManager won't allow me to reflect on myself",
 iace);
 }
 }
 }
 catch(SecurityException se)
 {
 // we need permissions from security manager
 getLogger().warn("Can't release all my services: " +
 "SecurityManager won't allow me to reflect on myself",
 se);
 }
}

alternative approaches include mixins/AOP/etc. Before you do any of this, words of caution:

http://lsd.student.utwente.nl/jicarilla/TooMuchMagic

http://lsd.student.utwente.nl/jicarilla/TooMuchMagic

GC magic with finalize() can work
GC magic is not part of the avalon-framework contract. Why? It can be somewhat buggy on obscure JDKs, it's expensive, it's complex, its misusing
intended use of finalize().

To be on the safe and portable side, don't rely on it being available, nor on it to always work perfectly.

Developers are dumb/lazy
What you can do is create a framework on top of avalon that makes more assumptions about developer laziness that uses mechanisms such as the
above. You'll want to coerce your dumb developer friends to all use your special class though.

No-one uses it
Errr...wrong. ServiceManager.release() is used in applications all over the globe. A notable one is cocoon.

what about Releaseable, , ?ReleaseRequired ReleaseUtil
Been there, done that, won't work. Marking components as releasable will just mean you'll be checking whether they're marked as such, which is just as
ugly.

what if we add a method to the service interface?
A SAXTransformer can't be used after its endDocument() method has been called, so let's add one method to all services that you can call, and which
indicates that the component can be reclaimed / put in a pool / disposed.

Comment 1: Adding a release() method to the Component interface would be a double whammy - not only do we bring back the most hated interface in
Avalon from its deprecation, we bring it back in tandem with the most hated method. Nice.

Comment 2: The code doesn't get that much better. Instead of:

 MyService ms = null;
try {
 ms = lookup(...);
 ...
} finally {
 release(ms);
}

you get:

 MyService ms = null;
try {
 ms = lookup(...);
 ...
} finally {
 if (ms != null) {
 ms.release();
 }
}

which is a step sorta sideways-backward, with an extra null check being required. (Having that null check encapsulated in a ReleaseUtil.release(Object o)
is a solution, see above.)not

It boils down to...
There's a simple choice:

either

you restrict yourself to a subset of lifestyles that do not require
release() semantics (example: Phoenix,);PicoContainer

#
#
https://cwiki.apache.org/confluence/display/AVALON/PicoContainer

or

you always do the release() semantics, even when they're not really
required

	ServiceManagerRelease

