
Controls ControlPackaging
Controls Packaging Model
The Beehive Control framework includes a JAR-based packaging model that allows a collection of controls (and supporting control implementations) to be
bundled into a JAR file.

The primary goal is to enable a tool to quickly scan a jar file for a list of available controls (and certain key attributes) and then introspect individual
classes within the JAR.
A secondary goal is to provide an annotation model that enables the creation of JAR manifest attributes and custom associated with a BeanInfo
Control simply by annotating the original source artifacts. JavaBean

Relationship to packaging modelJavaBeans

The goal is to fully support the packaging and introspection model for ControlsJavaBeans . There is no point in re-inventing the wheel and/or doing
something different where the existing spec describes useful functionality. To make the model easier to use for developers and tools, the JavaBeans
Controls packaging model defines a set of JSR-175 annotation types that enable packaging information to specified declaratively inside Control source
files.

Section 11 of the specification actually defines a simple packaging model based upon entries in META-INF/MANIFEST.MF. The spec states JavaBeans
that the manifest will contain a section describing each of the form:JavaBean

Name: org.apache.beehive.controls.samples.SampleBean.class
JavaBean: true

There is also a basic introspection model (based upon the java.beans.Introspector class) that enables a class to be queried for its java.JavaBean
BeanInfo, , , , etc. to provide additional information about the . These various Descriptor BeanDescriptor MethodDescriptors PropertyDescriptors JavaBean
types all derive from a common base class (FeatureDescriptor) that enables customized design-time attributes to be associated with bean types,
properties, methods, and events.

[JavaBeans spec and API docs can be found at:]http://java.sun.com/products/javabeans/docs/spec.html\

These two mechanisms (manifest attributes and descriptor elements) will be leveraged to provide an extended packaging model for Beehive BeanInfo
Controls.

JAR Manifest Attributes

The standard Control processing/build infrastructure provides support for generating the basic set of JAR manifest entries for automatically JavaBeans
generated to support Beehive controls. When the annotation processor for Control JSR-175 annotations is run, the processor will generate JAR manifest
fragments for each Control that has been generated. These fragments will be written to the class build output directory have and the name JavaBean <fully-

.qualified-bean-classname>.class.manifest

A special Controls Jar Ant task is provided that can be used to generate a JAR file containing Controls that will merge the generated manifest fragments
into the JAR manifest. The Controls Jar task derives directly from the base-level Ant <jar> task, and support all of its standard attributes and

. This task can be imported into an Ant build file for a Controls JAR as follows:nested elements

<taskdef name="control-jar"
 classname="org.apache.beehive.controls.runtime.packaging.ControlJarTask"
 classpath="{beehive-lib-dir}/controls.jar"/>

A sample usage of this task (from the Controls checkin tests) is shown below:

<control-jar destfile="${build.jars}/drtbeans.jar" basedir="${build.beans}" />

The resulting META-INF/MANIFEST.MF manifest file will contain the contents of any input manifest file (passing as an attribute or inline to the <control-
jar> task merged with the auto-generated manifest descriptor attributes.

Declaring custom JAR manifest attributes using @ManifestAttribute and @ManifestAttributes

The Controls packaging model also provides a simple JSR-175 annotation syntax that enables a developer or tool to add custom manifest attributes for a
generated Control by annotating the Control public or extension interface, as follows:JavaBean

#
#
#
#
#
#
#
#
#
#
#
#
http://java.sun.com/products/javabeans/docs/spec.html
#
#
#
#

package org.apache.beehive.samples.packaging;

import org.apache.beehive.controls.api.packaging.ControlInterface;
import org.apache.beehive.controls.api.packaging.ManifestAttribute;

@ControlInterface
@ManifestAttribute(name="MyAttribute", value="MyValue")
public interface MyControl { ... }

This would result in the following JAR manifest section being created:

Name: org.apache.beehive.controls.samples.packaging.MyControlBean.class
JavaBean: true
MyAttribute: MyValue

A collection of attribute name/value pairs for a Control public or extension interface can be specified using the annotation type:ManifestAttributes

@ControlInterface
@ManifestAttributes({
 @ManifestAttribute(name="MyAttribute", value="MyValue"),
 @ManifestAttribute(name="MyOtherAttribute", value="MyOtherValue"),
 ...
 })
public interface MyControl { ... }

BeanInfo Attributes

JavaBeans provides a basic introspection model that enables tools to query a for information about its properties, methods, events, and other JavaBean
attributes. Tools can access this information using the services of the java.beans.Introspector class that will return a instance describing the bean BeanInfo
type and provides access to the various Descriptor types elements that provide useful (PropertyDescriptor, , , ...)MethodDescriptor EventSetDescriptor
information about the .JavaBean

Each of these Descriptor classes derives from a common class (java.beans.FeatureDescriptor) that provides useful design-time information for tools, such
as the display name of the property, method, or event, a short description, whether the should be hidden or displayed, is for basic or expert use, feature
etc. Additionally, the can also contain a set of attributes (name/value pairs) that be used to provide customized or tool-specific attributes FeatureDescriptor
that related to the .JavaBean feature

The Controls packaging model augments the standard model by providing a set of JSR-175 annotations that allow Descriptor values JavaBeans JavaBean
to be specified directly on declarations in a Control public or extension interface, and providing the necessary infrastructure to generate customized BeanInfo
support classes that will expose this information to tools. Once generated, the customized is accessible using the standard BeanInfo JavaBeans

.introspection model

The subsequent sections describe these annotations. There is a base type that can be used to set the generic information FeatureInfo FeatureDescriptor
for a Control and then Descriptor-specific annotation types to set the specific values for bean, property, method, and event descriptors.feature

Setting values using @FeatureInfoFeatureDescriptor

The annotation type can be used to set any or all of the various elements for types, properties, methods, event FeatureInfo FeatureDescriptor JavaBean
sets, or events. A supporting type (@FeatureAttribute) also enables custom attributes to be set for the feature.

Here is the JSR-175 annotation type declaration for :FeatureInfo

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

package org.apache.beehive.controls.api.packaging;

import java.lang.annotation.*;

@Target({ElementType.TYPE, ElementType.METHOD})
public @interface FeatureInfo
{
 public String displayName() default ""; // default: use reflection name
 public String name() default ""; // default: use reflection name
 public String shortDescription() default "";
 public boolean isExpert() default false;
 public boolean isHidden() default false;
 public boolean isPreferred() default false;
 public FeatureAttribute [] attributes() default {};
}

Default values are provided for the members of this type, meaning only non-default values need to be set on use. Here is an example of using this type to
set information for a Control type:FeatureDescriptor JavaBean

@ControlInterface
@FeatureInfo(
 displayName="My Control",
 shortDescription="A simple packaging example control",
 isExpert=true,
 attributes=({
 @FeatureAttribute(name="MyCustomAttribute", value="TheValue"),
 ...
 })
)
public interface MyControl { ... }

The above annotation would result in the following result from using the introspection API:JavaBeans

String desc = java.beans.Introspector.getBeanInfo(MyControlBean.class).getBeanDescriptor().
getShortDescription();

The value of after this call would be "A simple packaging example control".desc

The @FeatureInfo annotation can be used in the following locations:

An interface annotated with @ControlInterface or @ControlExtension to set feature attributes for the BeanDescriptor

associated with the generated type.JavaBean

A method declaration within an @Control or @ControlExtension interface to set feature attributes for the

MethodDescriptor associated with a Control operation

A method declaration with an @PropertySet interface to set feature attribute for the associated with the Control property. PropertyDescriptor
An interface annotation with the @EventSet annotation to set feature attributes for the associatedEventSetDescriptor

with a Control event set.

A method declaration within an @EventSet interface to set feature attributes for the associated with a Control event MethodDescriptor

Setting attributes using @BeanInfoBeanDescriptor

TBD

Setting attributes using @PropertyInfo=PropertyDescriptor

The @PropertyInfo annotation can be placed on a property method declaration to specify the eventing behavior of the annotated property.

Here is the declaration of :PropertyInfo

#
#
#
#
#
#
#
#
#
#
#
#

@Target({ElementType.METHOD}) // appears on PropertySet method declaration (i.e. properties)
public @interface PropertyInfo
{
 public boolean bound() default false; // Sends PropertyChange events
 public boolean constrained() default false; // Sends VetoableChange events
}

An example usage of is:PropertyInfo

@ControlInterface
public interface MyControl
{
 @PropertySet
 public @interface SampleProps
 {
 @FeatureInfo(shortDesc="This property send no events")
 public int basicProp()

 @PropertyInfo(bound=true)
 @FeatureInfo(shortDesc="This property will send PropertyChange events")
 public int boundProp();

 @PropertyInfo(constrained=true)
 @FeatureInfo(shortDesc="This property will send VetoableChange events")
 public int constrainedProp();
 }
}

The full set of classes for annotations can be found in the org.apache.beehive.controls.api.packaging package.BeanInfo

#
#

	Controls ControlPackaging

