
Design NetUICompiler
NetUI Compiler

Introduction

The NetUI compiler layer consists of annotation processors for the following types of files:

page flow controllers
shared flow controllers
form beans
JavaServer Faces backing beans

Annotation processing runs under both and , although apt (processing true Java 5 annotations) is currently the only supported tool.apt XDoclet

The architecture involves several layers:

compiler-core: The bulk of the annotation processing code; has no ties to either apt or XDoclet.
typesystem: Generic typesystem interfaces; are implemented as wrappers by the apt and XDoclet layers. The rest of the core is built on
these interfaces.
processor: Core code that kicks off annotation processing for various file types.
grammar: Annotatation rules and custom attribute types to support the Checking phase of annotation processing.
model: The model that is built up for generated files. Once this is built up, it is used to write out the actual XML files that are generated.
genmodel: The classes here extend the classes in , and are also aware of annotations. They are used to create model classes model
based on annotations in the source files.

compiler-apt: Thin layer that runs annotation processing from within Sun's apt (or from within an IDE that implements Sun's Mirror interfaces,
which are compile-time representations of types, annotations, etc.).

apt: actual apt (s) that use delegating (s) to delegate to the processors in AnnotationProcessorFactory AnnotationProcessor
the core layer.
typesystem.impl: Mirror-based implementations of the interfaces from the core layer.typesystem

compiler-xdoclet: Thin layer that runs annotation processing from within XDoclet.
xdoclet: Actual XDoclet task/subtask to delegate to the core annotation processors.
typesystem.impl: XDoclet-based implementations of the interfaces from the core layer. typesystem

Details

typesystem in compiler-core

The typesystem looks very much like Sun's interfaces. It contains the following sets of interfaces:Mirror

declaration: Type declarations and everything underneath. These are the bulk of the interesting elements when processing classes. If you have a
, for instance, you can get access to any annotations on the class, any method/field declarations within the class, etc.ClassDeclaration

type: These are interfaces for (sometimes called a "type usage"). They are different than type declarations because they represent type instance
the use of a type within a declaration. For example, this is a type instance in a field declaration, which would produce a for ClassType MyObject
:

 public MyObject someField;

Contrast this to the declaration for , which would produce a :MyObject ClassDeclaration

 public class MyObject
 {
 ...
 }

In general, if you have a (e.g.,), you can get to its (e.g.,).type usage ClassType type declaration ClassDeclaration
env: This contains base annotation processor environment, which is used to get things like the Messager (for emitting errors and warnings), the
Filer (for writing out files), the list of type declarations that are being processed, etc.

processor in compiler-core

The main annotation processors here are and . Each one kicks off the PageFlowAnnotationProcessor FormBeanAnnotationProcessor
appropriate for the class declaration that is being processed. chooses the checker (e.g., checker PageFlowAnnotationProcessor PageFlowChecker
) based on the class-level annotation (e.g.,) and the base class for the one being processed (e.g.,).@Jpf.Controller PageFlowController

http://java.sun.com/j2se/1.5.0/docs/guide/apt
http://xdoclet.sourceforge.net/xdoclet
http://java.sun.com/j2se/1.5.0/docs/guide/apt/mirror
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/PageFlowController.html

Each checker (all extend) is the starting point for checking the class, which mostly consists of delegating to the right annotation grammar(s) BaseChecker
for the class, and for each method as appropriate.

grammar in compiler-core

The classes here extend , to provide rules for annotations, and , to provide rules for attributes (members) AnnotationGrammar AnnotationMemberType
in annotations. For example, provides rules for the annotation, and provides checking for an ActionGrammar @Jpf.Action JavaIdentifierType
annotation attribute that must be a valid Java identifier, like on .returnAction @Jpf.Forward

In general, annotation grammars provide five main things, which are used by the base class:AnnotationGrammar

Declarations for member types (attributes) and nested annotation grammars, provided by , , and addMemberType addMemberGrammar addMemb
.erArrayGrammar

Mutually-exclusive attributes (): a set of arrays of attribute names that are mutually-exclusive, like getMutuallyExclusiveAttrs outputForm
 and on .Bean outputFormBeanType @Jpf.Forward

Required attributes (): a set of , where each array specifies that of attributes is required. For getRequiredAttrs arrays at least one of a group
instance at least one of , , , , or is required on .path navigateTo returnAction action tilesDefinition @Jpf.Forward
Attribute dependencies (): a set of arrays that describe attribute dependencies. The first element is the attribute in getAttrDependenciese
question, which is only allowed if at least one of the rest of the attributes is present. For example on , the attribute @Jpf.Forward externalRedirect
is only allowed if the is present.path
Custom checking, in , , and . onBeginCheck onCheckMember onEndCheck

Annotation member types simply provide custom checking by overriding .onCheck

All of the grammar/type checking is kicked off during the phase; see .check BaseAnnotationProcessor

genmodel in compiler-core

During the phase of annotation processing (see), instances of classes in are created based on generate BaseAnnotationProcessor genmodel
declarations for annotated classes being processed. As an example, see , which accepts a (the annotated page flow GenStrutsApp ClassDeclaration
or shared flow class) in its constructor. It builds up a model based on the annotations, using its base class setters. Once the model is built up, StrutsApp
it is written to XML using base class methods in .StrutsApp

Future Directions

As Eddie has suggested, some of this code could move to a Jakarta Commons-type project. This would include the package in typesystem compiler-core
, some basic annotation grammar/type classes, and some skeleton code for apt {{AnnotationProcessor}}s and XDoclet tasks from and compiler-apt compi

, respectively.ler-xdoclet

http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#returnAction()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#outputFormBean()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#outputFormBean()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#outputFormBeanType()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#path()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#navigateTo()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#returnAction()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#action()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#tilesDefinition()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#externalRedirect()
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#path()

	Design NetUICompiler

