
Design PortletScoping
Portlet Scoping

Introduction

As underlying support for running NetUI applications within portlets (originally within BEA's proprietary Portal), the idea of is present throughout the scoping
NetUI framework. There are two kinds of scoping:

Session Scoping: Simple. It means that things like page flow instances are stored in the session under "scoped" names, which are the usual
internal attribute names with a Scope ID (portlet ID) prefix.
Request Scoping: More complicated underneath, but simple in concept: prefix all request parameter and attribute names with the Scope ID
(portlet ID).

Session Scoping

Details

All getting/setting of session-scoped attributes for page flow, page flow nesting stack, shared flow, and JSF backing bean instances uses ScopedServlet
 to construct the actual session attribute name. By default, this API returns the attribute name unmodified. If Utils.getScopedSessionAttrName()

either of the following two conditions are true, then the Scope ID is prefixed to the attribute name:

The current request is a . is a wrapper over that we use when running inside a portal ScopedRequest ScopedRequest HttpServletRequest
(more details below).
A special request parameter () exists. This is It is used to ScopedServletUtils.SCOPE_ID_PARAM not inherently part of portal support.
support multiple active page flows in the session, usually for multiple browser frames/windows. It's important to note that the scoping mechanism
is exactly the same as what it is for /Portal, so a browser window using this mechanism could talk to the page flow from a ScopedRequest portlet
with the same Scope ID... but in the end it can be used on its own. The attribute on NetUI tags like is a targetScope <netui:anchor>
convenience for setting this parameter.

Issues and Future Directions

If NetUI changes to use a NetUI-controlled for things like request/session access, then this context object can be smart about whether to context object
create scoped attribute names. It would eliminate the need for calling whenever setting a ScopedServletUtils.getScopedSessionAttrName()
managed session attribute.

Request Scoping

URL Rewriting

A portal framework can register a that will prefix request parameters with the current Scope ID in any page rendered using NetUI tags. This URL rewriter
makes the names unique, and targeted to a particular portlet. Some examples (assuming a portlet ID of "portletA":

<input type="text" name="portletAfoo"> instead of <input type="text" name="foo">
<a href="/myApp/someurl?portletAbar=someValue instead of <a href="/myApp/someurl?bar=someValue

The URL rewriter may rewrite the URL in other ways, but this is its main function as it relates to scoping.

ScopedRequest

A portal framework can create a wrapper around a basic in order to decode scoped requests (normally ScopedRequest HttpServletRequest
requests that come from a page rewritten with a URL rewriter, above). The does two main things:ScopedRequest

keeps track of a Scope ID (portlet ID)
filters request parameters and attributes to return only ones that have the desired Scope ID. In the URL rewriter examples above, a ScopedReque

 with Scope ID of "portletA" would see request parameters "foo" and "bar", respectively. st

In general, a would be created/initialized by a portal framework in framework code (or even in a Servlet Filter) before NetUI ever sees ScopedRequest
the request.

Issues and Future Directions

A should be responsible for scoped parameter names, in addition to its current responsibility for rewriting parameter names to be URLRewriter decoding
scoped. Currently, our (and the rest of the scoping package) assumes that scoping is done by prefixing the Scope ID to the name. A ScopedRequest
portal URL rewriter currently has to know this implicitly.

A obtained through can be configured to "see" a request attribute on the outer ScopedRequest ScopedServletUtils.getScopedRequest()
request if it's not present in the scoped request. NetUI may currently break when this is turned on (something to do with URL rewriters). We should make
sure to work in this situation.

#

A portal framework is in charge of persisting scoped request attributes as necessary for use during "refresh" requests (requests that involve user
interaction with a different portlet than the one being refreshed). In the case where the NetUI framework knows an attribute be persisted, it should should
use some API for marking a request attribute as "persistable". Something like and ScopedServletUtils.setPersistableAttribute() ScopedSer

 (the latter would be to mark an attribute that's already been set, like some of the ones set by Struts).vletUtils.markPersistableAttribute()

Related to the above, there are some attributes that should be persisted, but which are large. An example is a Struts , which can be ModuleConfig
reconstructed based on the module path. NetUI could offer a abstract base class that would be aware ReconstructibleAttribute ScopedRequest
of:

 public abstract class ReconstructibleAttribute
 {
 private transient Object attribute;
 private Object reconstructionKey;

 public ReconstructibleAttribute(Object attribute, Object reconstructionKey) {
 this.attribute = attribute;
 this.reconstructionKey = reconstructionKey;
 }

 public void dropAttribute() {
 attribute = null;
 }

 public abstract void reconstructAttribute(ServletRequest request, ServletContext servletContext);
 }

Also, a for attributes that can be persisted as-is:PeristableAttribute

 public class PersistableAttribute extends ReconstructibleAttribute
 {
 public PersistableAttribute(Object attribute) {
 super(attribute, attribute);
 }

 public void reconstructAttribute(ServletRequest request, ServletContext servletContext) {
 attrible = key;
 }
 }

Calling would set a in the . Calling ScopedServletUtils.setPersistableAttribute ReconstructibleAttribute ScopedRequest getAttrib
 on would get the of a (reconstructing as necessary). When persisting attributes, a portal ute() ScopedRequest value ReconstructibleAttribute

framework could call on anything that derives from in the map returned by dropAttribute() ReconstructibleAttribute ScopedRequest.
.getAttributeMap()

Response Scoping

NetUI also includes a wrapper that a portal framework would use to wrap the actual response. The default implementation doesn't do ScopedResponse
much beyond keeping track of whether a redirect happened, and of errors/status-messages/cookies.

Public APIs Related to Scoping

The most commonly-used APIs are in :ScopedServletUtils
: Gets the outer request, which is the one that the is wrapping. If there is no , just returns the given getOuterRequest ScopedRequest ScopedRequest

request.

: Badly named. Unwraps until it finds a , which it returns. If there is none, returns null.unwrapRequest ScopedRequest

: Used by a portal framework to create or look up a cached , based on the original request and a Scope ID.getScopedRequest ScopedRequest

: Used by a portal framework to create or look up a cached , based on the original response and a getScopedResponse ScopedResponse ScopedReque
.st

Additionally, a portal framework will want to use the API:URLRewriterService
: Register a with the request to prefix request parameters with the current Scope ID.registerURLRewriter URLRewriter

: Unregister the URL rewriter from the request.unregisterURLRewriter

	Design PortletScoping

