
Jsr181ProjectPlan
Milestone: Axis .jws Deployment

Description

Annotated Java files with ".jws" file extensions are automatically registered with Axis as a Web Service and configured based on the file's metadata. Most
annotations and rules specified in JSR-181 are supported.

Tasks

Research
Beehive, JSR-181: done
Axis: done

Checkin of initial version in to Beehive-SVN: done
Annotation reader for class files (reflection): done
Annotation reader for source files (apt): done
Object Model

Interfaces: done
Applicable JSR-181 default values: done
Applicable JSR-181 rules: done

Customized Axis hook, version 1: done
@WebService (except endpointInterface: deferred): done
@WebMethod: done
@Oneway: done
@WebParam: done
@WebResult: done
@HandlerChain: done
@SOAPBinding: done
@SOAPMessageHandlers: done
@SecurityRoles: deferred
@SecurityIdentity: deferred

Backwards compatibility with non-annotated files: done

Tests

Unit tests
Annotation reader for class files (reflection): done
Annotation reader for source files (apt): done
Object Model: done

JSR-181 default values
Rule: Oneway/Exceptions
Rule: Oneway/OUT-WebParam
Rule: Oneway/void
Rule: SOAPHandlers/HandlerChain

Customized Axis hook: done
DropInDeploymentHandler: done

Documentation

Overall architecture and design (Beehive Wiki): (95%)work in progress
Sample application "AddressBook" (from Axis)

Server side: done
Simple "local" client (same VM): done
Simple "remote" client (WS): done
Documentation (incl. tutorial on how to author a .jws file with JSR-181 annotations: (%) work in progress

Risks

Legal issues using JCP code
More modifications to JSR-181 spec (moving target)
More modifications to Axis parts interfacing with Beehive
Inter-subproject dependencies such as shared libs, etc.
Complex data types need more research

Milestone: PetStore

#
#

Description

Select functionality of the "Pet Store" sample application used to showcase the other two prongs of Beehive netui and controls is exposed as a WebService
, using JSR-181 metadata annotations. The emphasis of this milestone lies on illustrating the simplicity of authoring Web services using JSR-181
annotations compared to the more complex traditional authoring model. It would be nice to complete this milestone for for demonstrations.ApacheCon

Tasks

Research
Axis: done
Pet Store application: done

Update code base with JSR-181 v0.9: done
Integrate wsm with controls

Use apt for compilation and verification (%)work in progress
Use reflection for deployment (%)work in progress

Define demo scenario: done
identify functionality to be exposed through PetStore WebService
browser-based netui GUI used by customers for online shoppingPetStore
stand-alone WS client w/ e.g. SWING GUI used by owner for inventory managementPetStore

Implement with annotationsWebService
design and implement server (jws-file and supporting classes): (75%)PetStore work in progress
design and implement client (SWING GUI): (75%)PetStore work in progress

Develop "Beehive story" (wsm, netui, controls): (%)work in progress
Define and implement integrated sample (controls (e.g. DBControl), wsm): (%) work in progress

Tests

JUnit tests for Web service - server: open
JUnit tests for Web service - client: open

Documentation

Describe difference between code samples using and not-using annotations: open
Describe relationship between wsm and netui, controls: open
Describe how to setup required deployment environment: open
Optional: Documentation on how to setup development environment: open
Optional: Describe setup of development environment (plugins, etc.): open

Eclipse configuration
Tomcat plugin
JDK 1.5 plugin
Axis source code

Risks

Depends on availability of functional "PetStore" sample application
Depends on other subprojects (netui, controls)
apt still "pre-release", not (documented) programmatic interface

Milestone: JSR-181 compliant

Description

This milestone adds all the missing pieces to the implementation that are required for a full JSR-181 compliant implementation. The milestone is complete
once the implementation passes the TCK.

Tasks

Research
Axis: open
XMLBeans: open

Customized, JSR-181-compliant Axis hook version 2
@WebService.endpointInterface: (50%)work in progress
@SecurityIdentity: open
@SecurityRoles: open

WSDL to Java (generates Java server side skeletons from WSDL descriptor)
WSDL reader: open

Java to WSDL (generates WSDL descriptor from annotated Java file)
WSDL writer: open

#
#
#
#
#
#
#
#
#

Tests

Unit tests: update existing unit tests
WSDL reader: open
WSDL writer: open

Test suite with files
Automatic build and deployment mechanism for test scenarios: open
WSDL verification: open
Automatic client-side code generation: open
Automatic client-side build and deployment mechanism: open

Download, integrate and check in TCK: open
Annotated test files that cover all functionality: open

Documentation

Update samples: open
Update tutorial: open
Start with Java manual, samples: open
Start with WSDL manual, samples: open
Javadoc: open
Tutorial for converting existing Web application into : WebService open

Risks

Depends on availability of TCK

Milestone: IDE Support

Description

This milestone provides functionality for applications that need to verify code (e.g. IDEs) through validation functionality that goes beyond validation by the
Java compiler. In particular, the verification routines check for semantic errors that contradict (annotation) rules specified in JSR-181.

Tasks

Refactor (from "controls" to "commons"): TwoPhaseAnnotationProcessor open
Make JSR-181 implementation available to IDE (TwoPhaseAnnotationProcessor)

update check(): open
update generate(): open

Add appropriate error messages (text, position, etc.) for error cases: open

Tests

Extended JUnit tests for : AnnotationProcessor open

Documentation

Use documentation from controls: –

Risks

–

Milestone: WSM Demo Application
This milestone demonstrates how the authoring model suggested by JSR-181 metadata annotations simplifies the creation of Web services. The sample
application focuses on the WSM part of Beehive, which keeps the sample small and easier to understand than the more comprehensive "PetStore" sample.

Do we want to do this on top of the Pet Store sample?

Tasks

TBD.

#
#
#

Tests

TBD.

Documentation

TBD.

Risks

TBD.

	Jsr181ProjectPlan

