
1.
2.

22BlockImplementation
Migration path from current monolytic application to a decentralized block
system
The goal of this evolving document is

providing a migration path from our current monotlic application and
to find out what we have to do on the Cocoon side (see , component lookup, block protocol) BlockManager

This is written without having it discussed with Pier - so possible classloading issues are not considered. His input is very appreciated

Component management in general
provide a descriptor for each block
every block has a root sitemap
every block has a BlockManager

provides external access to all public components
provides internal access to all private components
performs component lookups: if the component is NOT locally available, the lookup is
delegated to the of the block that provides access to this blockBlockManager
components can be managed by different frameworks

Spring: we provide a special implementation that can lookupBeanFactory
public components of other Blocks
ECM: service manager uses the to perform components lookupsBlockManager

Sitemap & Source resolving
a special "block" protocol that can lookup sources of other blocks (it's also
aware of block inheritance --> possible usecase: fallback mechanisms)
order of source resolving

the root sitemaps of blocks are implicitly mounted, this means that they match first
--> if not, passthrough

use of a sitemap components
core sitemap componet or <map:generate type="file"/> <map:generate type="core:file"/>
local component <map:generate type="local:myComponent"/>
a sitemap component declared by another block <map:generate type="anotherComponent:yourComponent"/>

input modules could be declared by other blocks
use of a core input modul {request-param:xyz} or {core:request-param:xyz}
use of a local input modul or

 {local:myIM:myParam}

use of an input module of another block

 {otherBlock:otherIM:yourParam}

source factories could be declared by other blocks
tbd

link rewriting (one block does not now where the other block's URLs are mounted - implemented as transformer)

O/R-mapping
O/R-mapping tools have some kind of super factory that does all the persistence stuff (object creation, updating, deleting, ...). Used in combination with
blocks this means that the metadata are spread over blocks and they are not at a single place.

As there might be dependencies between objects of different blocks, this super-factory has to be configured using all the metadata files of the different
blocks. It should be possible to replace the base implementations of those super-factories by an own implementation that has access to the BlockManager
that has access to the metadata files.

Another option would be that every block registers its o/r-mapping files at an super-factory-metadata-registry.

This way O/R-mapping relies on the "feature" that all classes put into the public JAR of it, can be accessed from other blocks.

#
#
#
#
#
#

Logging
Any implications on logging because of blocks?

Kernel implementation - or: How do he things described above fit into the
current design of kernel?
Here input by Pier would be *very* helpful.

Backwards compatibility
all existing components can be reused
sitemap? (declarations of components located in blocks will change --> only affects root sitemaps)

	22BlockImplementation

