
1.
2.
3.
4.

1.
2.
3.

CocoonFormsCreatingWidgets
Note: the following is a rough outline, is not fully tested and may, in fact, be completely incorrect. YMMV

There are a number of steps required for adding a new Widget to CocoonForms:

Create the Java classes for the Widget.
Update the file.forms-form.xconf
Update the XSL which processes the widgets.
Rebuild Cocoon.

These steps are described in more detail below.

Create the Java classes for the Widget

You'll need to create at least three classes to implement the Widget:

an implementation of the Widget interface;
an implementation of the WidgetDefinition interface; and
an implementation of the WidgetDefinitionBuilder interface.

The above interfaces all come from the package. The existing Cocoon Forms source code provides plenty of org.apache.cocoon.forms.formmodel
examples of how to implement them.

The WidgetDefinitionBuilder parses the form definition document to create a WidgetDefinition. The WidgetDefinition is an class that is used as immutable
a factory to create Widget instances. Widget instances are what constitute the form's object model that hold the form state.

Update the forms-form.xconf file

Add a reference to your implementation in the file, which can be found in the directory for the WidgetDefinitionBuilder forms-form.xconf conf
forms block. You have to specify the name of the element for that widget as well. This name should preferably match the string returned from the getXMLE

 method of your implementation.lementName() Widget

Update the XSL which processes the widgets

You'll probably need to update the XSL file(s) which process the widgets. If you are using the samples that come as part of the forms block, this will most
likely be (which is found in the directory). You will need to forms-field-styling.xsl COCOON_HOME/src/blocks/forms/samples/resources
add a template which matches the element name of your new widget and generates appropriate output from it. The file contains plenty of templates to use
as examples.

Rebuild Cocoon

After all this, you'll need to rebuild cocoon. This will cause the new classes to be compiled, the updated classes to be recompiled and the cocoon.xconf
file to be regenerated. It may be a good idea to do a first, but that's up to you.build clean

For very specific widgets

In some rare cases, you may also need to modify the WidgetReplacingPipe. This is needed only for widgets that require a special handling by the template
engine, such as repeater, class or union.

Modify the classEffectWidgetReplacingPipe

Add a new handler class for your widget, as an inner class of .EffectWidgetReplacingPipe
Add a new instance of your handler class as a member variable.
Add a class constant for the name of your new widget.
In the constructor, add your new handler class to the templates map, using the constant as the key.

Not sure whether this is actually necessary...

Modify the classWidgetReplacingPipe

You may need to make some changes to the class, from the package. This WidgetReplacingPipe org.apache.cocoon.forms.transformation
will probably only be necessary if a tag other than is used to refer to the widget in form template files. Examples of this are the repeater and <widget>
aggregate widgets.

If you do need to make these changes, the methods most likely to be affected are and .startElement endElement

#
#

	CocoonFormsCreatingWidgets

