
JavaLogging

Cocoon-Style Logging in Non-Cocoon Java Classes

This page explains how to implement Cocoon-style logging, in a Java class that is not inherited from a Cocoon or Avalon component class. The class is
however used within a Cocoon application.

A typical use for this might be to implement logging in a Java Bean used in a Cocoon application.

How to Implement Logging

In Cocoon, like in Perl, there's more than one way to do it. In the case of logging the following solutions are possible:

1.Extend - The simplest solution, but it only AbstractLogEnabled
works if your class doesn't already extend some other class.
1.Implement - A little more work, but more flexible.LogEnabled

Solution One: Extend AbstractLogEnabled

In your class you extend the class.AbstractLogEnabled

To write log messages you simply call the appropriate log method using the provided by the method, which is available from the Logger getLogger()
parent class .AbstractLogEnabled

 import org.apache.avalon.framework.logger.AbstractLogEnabled;

 public class SomeClass extends AbstractLogEnabled {

 public void someMethod() {
 ...
 getLogger().debug("Hello, log. It worked!");
 getLogger().info("Hello, log. Here is info");
 getLogger().error("Hello, log. Here is an error");
 //..etc.
 ...
 }
 }

This works fine, provided you class doesn't already extend some other class.

Solution Two: Implement LogEnabled

Have your class implement the interface. A typical class might do the following:LogEnabled

 import org.apache.avalon.framework.logger.Logger;
 import org.apache.avalon.framework.logger.LogEnabled;

 class SomeBean extends SomeOtherBean implements LogEnabled {
 ..
 // The LogEnabled interface is one method: enableLogging
 private Logger logger;
 public void enableLogging(Logger logger) {
 this.logger = logger;
 }

 // Example method that writes to the log
 public void setThing(String thing) {
 logger.debug("SomeBean: thing = " + thing);
 ...
 }
 }

Note that in this case you use the directly and don't need to use the accessor method. Note that a developer logger getLogger() maintainance aware
would probably implement their own .getLogger()

Enabling Logging

For both of these solutions you must enable logging by calling the
 method on the class. This requires that you have a valid object to provide to .enableLogging() Logger enableLogging()

Generally you can get the Logger from a Cocoon component class. In my application I called from my Cocoon action class, which enableLogging()
extends :AbstractXMLFormAction

 ...
 SomeClass myClass = new SomeClass();
 myClass.enableLogging(getLogger());
 myClass.someMethod(); // Writes some log messages
 ...

Note that many of the Cocoon classes extend Avalon Component classes.

Remember to call you call any methods that write log messages. In Cocoon application it is not always obvious when to call enableLogging() before en
 as the creation and initialization of many of your classes will be handled automatically by Avalon, one of the Cocoon sub-systems.ableLogging()

The class provides a convenient way to enable logging:ContainerUtil

ContainerUtil.enableLogging(object, logger);

This method takes care of the following issues:

The logger is only passed to the object if it implements .LogEnabled
If the logger is , an exception is thrown. null

Links to Avalon Documentation

To be absolutely sure that you are writing solid code, you'll need a basic understanding of the Avalon component life-cycle. This is a big subject and
beyond the scope of this page. You can read more at

The Avalon Logkit, which is used by Cocoon:

http://jakarta.apache.org/avalon/logkit/whitepaper.html

The Avalon Component Lifecycle:

http://jakarta.apache.org/avalon/framework/reference-the-lifecycle.html

If you're still curious, here is a link to an excellent white paper explaining development using avalon:

http://jakarta.apache.org/avalon/developing/index.html

..and that's all there is to it.

Many thanks to Marcus Crafter, Judith Andres and KonstantinPiroumian
for their helpful input.

– AlanHodgkinson

http://jakarta.apache.org/avalon/logkit/whitepaper.html
http://jakarta.apache.org/avalon/framework/reference-the-lifecycle.html
http://jakarta.apache.org/avalon/developing/index.html
https://cwiki.apache.org/confluence/display/COCOON/KonstantinPiroumian

	JavaLogging

