
1.
2.
3.
4.

ModularDatabaseActions
The provide similar funcionality as . Were mainly created to make avaliable the support for Modular Database Actions OriginalDatabaseActions
autoincrement columns, handle input and output flexibily and have a consistent interface.

A sucessful action will return the number of affected rows into a sitemap parameter called row-count

You can also use before send the data to the databaseFormValidationUsingCocoon

See the List of DatatypesOfModularDatabaseActions

Main improvements over the OriginalDatabaseActions

Allow to store all the database structure in a single file
Flexible input and output using modules.
Support for autoincrement column type that cover a wide range of database systems.
Transactional operations over more than one table

Usage

Describing the Structure of your DB - descriptor.xml

All the metadata are stored in a single XML file, that can contain the description of any number of tables. Into this file we can include description rules for
others Actions like . In this way we can have all the database metadata in the same file.FormValidatorAction

Example of a descriptor file:

<root>
 <connection>personnel</connection>
 <table name="user" alias="user">
 <keys>
 <key name="uid" type="int" autoincrement="true">
 <mode name="auto" type="autoincr"/>
 </key>
 </keys>
 <values>
 <value name="name" type="string"></value>
 <value name="firstname" type="string"></value>
 <value name="uname" type="string"></value>
 </values>
 </table>

The tag The element of the document is ignored, and can have any name. This allows a <root> root
single document to contain both database description and form validation configuration.

The tag This tag identifies a database connection pool, see .<connection> ConnectionPooling

The tag Describes a complete table. The file can contain several table elements. It has two <table>
attributes:

name – is the name of the table into the database.
alias – is and optional attribute. Is used to create an alternative name of a table, wich can be used inside a element. The table-set table-

 tag can be used if a complex join expresions is used as table name. Another usage is when different number of columns will be affected by set
different operations or if a table contains several candidate keys that are used alternatively. This way we can create "different views" of the same
table.

To find a table, the descriptor file is searched top-down for tables whose or match. The first that matches is used.name alias

The Tag - Defining Key Columns The descriptor file resembles the one for the <key> OriginalDatabase
. Note the absence of and attributes. See the Actions dbcol param DatatypesOfModularDatabaseActions

. It has 2 new attributes:

https://cwiki.apache.org/confluence/display/COCOON/OriginalDatabaseActions
https://cwiki.apache.org/confluence/display/COCOON/FormValidationUsingCocoon
https://cwiki.apache.org/confluence/display/COCOON/DatatypesOfModularDatabaseActions
https://cwiki.apache.org/confluence/display/COCOON/OriginalDatabaseActions
https://cwiki.apache.org/confluence/display/COCOON/FormValidatorAction
https://cwiki.apache.org/confluence/display/COCOON/ConnectionPooling
https://cwiki.apache.org/confluence/display/COCOON/OriginalDatabaseActions
https://cwiki.apache.org/confluence/display/COCOON/OriginalDatabaseActions
https://cwiki.apache.org/confluence/display/COCOON/DatatypesOfModularDatabaseActions
https://cwiki.apache.org/confluence/display/COCOON/DatatypesOfModularDatabaseActions

name - Specifies the database column name. Corresponds to the old attribute.dbcol
autoincrement - Indicate if a column is of this type. Autoincrement columns will be handled differently on insert operations.

Instead of specifying a parameter name, the modular actions support the use of different for each operation through the nested InputModules mode
elements.

No every column needs a element. The actions default module is defined as in the default installation to obtain the values from mode request_param
request parameters. The implicit name of the parameter is .table_name.column_name

The Tag - Defining No key or Other Columns Everything said above about the <value> Key Columns
applies to value columns as well. Except for the attribute. See the autoincrement DatatypesOfModularD

.atabaseActions

Operation Mode Types

Describes the modes of operation against the database. Basically, two different mode types exist:

autoincrement which is used only on INSERT when a key has set this attribute and
others for all other requirements.

In addition, a can specify different mode types to use instead of the predefined type names. Through this, and the fact that every mode can table-set
specify a different , it is easy to use different input modules for different tasks and forms.InputModules

One special mode type exists that matches all requested ones: . This makes it easier to configure only some columns differently for each table-set.all

How to obtain Values

As said above, the modular actions default to reading from with a default parameter name. This can be overridden using request parameters mode
elements. Any component that implements the InputModule interface can be used to obtain values. How to make such modules known to Apache Cocoon
is described in .http://xml.apache.org/cocoon/userdocs/concepts/modules.html

Beside using different input modules, their parameters can be set in place, for example to override parameter names, configure a random generator or a
message digest algorithm.

<table name="user_groups">
 <keys>
 <key name="uid" type="int">
 <mode name="request-param" parameter="user_groups.uid" type="request-param"/>
 <mode name="request-attr"
 parameter="org.apache.cocoon.components.modules.output.OutputModule:user.uid[0]"
 type="request-attr"/>
 </key>
 <key name="gid" type="int" set="master">
 <mode name="request-param" parameter="user_groups.gid" type="all"/>
 </key>
 </keys>
</table>

The above example shows that: the attribute is not read by the database action itself but the complete mode configuration object is passed to parameter
the input module. Both the and the input modules understand the attribute which takes precedence request attribute request parameter parameter
over the default one.

Another feature when obtaining values is tied to the attribute: Different modes can be used in different situations. The basic setup uses two different type
mode types:

autoincrement when inserting into key columns that have an indicator that they are indeed auto increment columns and
others for insert operations on all other columns and all other operations on all columns.

Table-sets can override the default names for these two mode type name categories with arbitrary names except the special name , wich is used with all
all requested type names. Lookup obeys first match principle so that all modes are tested from top to bottom and the first that matches is used.

How to store Values e.g. in your Session

All modular database action can be configured to use any component that implements the interface to store values. The output module is OutputModule
chosen on declaring the action in the sitemap or dynamically with a sitemap parameter. If no output module is specified, the default it to use the request
attribute module.

Note

#
https://cwiki.apache.org/confluence/display/COCOON/DatatypesOfModularDatabaseActions
https://cwiki.apache.org/confluence/display/COCOON/DatatypesOfModularDatabaseActions
#
http://xml.apache.org/cocoon/userdocs/concepts/modules.html

The interface does not allow to pass configuration information to the output module. This has to be done when the module is declared e.g. in cocoon.xconf.

Inserting Multiple Rows - Sets

A common task need to work on more than one row. If the rows are in different tables, this is catered for by . Operating on multiple rows of one table-sets
table requires to mark columns that should vary and among those one, that determines the number of rows to work on.

This is done with sets. All columns that cary a attribute can vary, those, that don't, are kept fixed during the operation. The column that is used to set
determine the number of rows is required to have a value of while all others need to have a value of for the set attribute. There may be master slave
only one master in a set.

Sets can be tagged either on column or on mode level but not both for a single column.

Select Your Tables - Table-Sets

Tables that should be used during an operation can be grouped together with a tag. A table-set references tables by their name or their <table-set>
alias.

Also, a table-set can override the attribute for the two categories and .mode autoincrement others

Operations spanning multiple tables in a table-set are done in a single transaction. Thus, if one fails, the other is rolled back.

 <table name="groups">
 <keys>
 <key name="gid" type="int" autoincrement="true">
 <mode name="auto" type="autoincr"/>
 </key>
 </keys>
 <values>
 <value name="gname" type="string"/>
 </values>
 </table>

 <table-set name="user">
 <table name="user"/>
 </table-set>

 <table-set name="groups">
 <table name="groups"/>
 </table-set>

 <table-set name="user+groups">
 <table name="user"/>
 <table name="user_groups" others-mode="request-attr"/>
 </table-set>

 <table-set name="user_groups">
 <table name="user_groups" others-mode="request-param"/>
 </table-set>

</root>

	ModularDatabaseActions

