
1.
2.
3.

1.

OJBWithJDO

Using OJB with JDO in Cocoon

Note: Since Cocoon 2.1.3 is part of Cocoon.OJBBlock

This is a "howto" about using OJB-JDO in Cocoon.

In this Howto we will show how to set a simple example of using OJB-JDO with Cocoon. The example uses PostgreSQL database, but you can change it
to use another RDMS.

Introduction

ObJectRelationalBridge (OJB) is an Object/Relational mapping tool that allows transparent persistence for Java Objects against relational databases.

OJB has 3 methods for access to Databases:

PersistentBroker NewbieGuideToOJB
ODMG
JDO

Since JDO is the recommended successor of ODMG, we will try to show how to start using JDO with Cocoon.

Scenario

We need to interact with a table that manage user's info. The table is called . The table primary key is autofilled with a sequence called auth_user
. auth_users_seq

We have already installed and running Cocoon.

Environment

Red Hat Linux 9
Sun J2SDK 1.4.2
Tomcat 4.1.24
Cocoon 2.1 (CVS 28-Jul-3003)
PostgreSQL 7.3.2
OJB-JDO 1.0rc4 (CVS 28-Jul-2003)

Solution

Download OJB 1.0.0 from (approx 8MB)http://db.apache.org/builds/ojb/
Be sure the binaries have JDORI support.
The command to build from sources with JDORI support is:

 bin/build.sh with-jdori jar

Note: Before building see and check requirements from 2. OJB Quickstart

2. Download the :JDO libraries

jdo.jar - for the OjbStore JDORI Plugin only.
jdori.jar - for the OjbStore JDORI Plugin only.

3. Create the table and the sequence in your database.auth_user auth_user_seq test

See for PostgreSQL posgres.sql

4. Create a file auth_user.jdo

This file contains the mapping between the beans and database columns for JDO

5. Compile and the bean.enhance auth_user.java

See .auth_user.java
The classes imported in step 1. and 2. are needed, include it in your classpath.
Put the ONLY the output class into "TOMCAT_HOME/webapps/cocoon/WEB-INF/classes/test"
to enhance the file, put the auth_user.class and the auth_user.jdo files in a directory called "test" and from the directory above "test" run the
following
$ java -cp "./;c:\db-ojb-1.0.0\lib\jdo.jar;c:\db-ojb-1.0.0\lib\jdori.jar;c:\db-ojb-1.0.0\lib\db-ojb-1.0.0.jar" com.sun.jdori.enhancer.Main -v -f
test\auth_user.class test\auth_user.jdo

https://cwiki.apache.org/confluence/display/COCOON/OJBBlock
https://cwiki.apache.org/confluence/display/COCOON/NewbieGuideToOJB
http://db.apache.org/builds/ojb/
http://db.apache.org/ojb/quickstart.html
http://java.sun.com/products/jdo

Note: in auth_user.jdo, first change the DTD location to: <!DOCTYPE jdo SYSTEM "http://java.sun.com/dtd/jdo_1_0.dtd">

6. Create a file in "TOMCAT_HOME/webapps/cocoon/WEB-INF/classes"repository.xml

This file contains info about your DB and credentials (jdbc driver, username and password).

7. Copy files and in "TOMCAT_HOME/webapps/cocoon/WEB-INF/classes"repository.dtd OJB.properties

8. Copy the following files from the OJB distribution to "TOMCAT_HOME/webapps/cocoon/WEB-INF/lib":

 antlr.jar
 jdori.jar
 commons-dbcp.jar
 commons-pool.jar
 db-ojb-1.0.rc4.jar
 jdo.jar

Please also include your database driver. As we are working with postgres...
* pg73jdbc3.jar

9. Copy and into "TOMCAT_HOME/webapps/cocoon/ojbdemo"adduser.xml sitemap.xmap

Test

Open *http://localhost:8080/cocoon/ojbdemo/adduser*

If all goes well, a record is added to your database.

If you press the refresh button in your browser you will get an error because you are trying to insert a new record with the same usr_login. (The column is
UNIQUE).

Links

OJB Website: http://db.apache.org/ojb/

Quickstart: http://db.apache.org/ojb/quickstart.html

Using JDO API in OJB: http://db.apache.org/ojb/tutorial4.html
Hands-on Java Data Objects: http://www-106.ibm.com/developerworks/java/edu/j-dw-javajdo-i.html

Notes

This is a first attempt to integrate OJB-JDO with Cocoon. I am also a OJB newbie. But after a week studing about OJB and JDO I think OJB with
JDO is a good way to fill the current "model" gap in the MVC design.
Currently I am trying to create a component that will create a just once for all the application. : See PersistentManagerFactory Done OJBBlock

The idea is that any request can "get" the global factory and ask his own PersistentManager. This is the correct way. After that we can use JDO as the
"model" using java classes.

Readers comments.

Also, for new OJB people, you need to get j2ee.jar to build OJB (JD Daniels)

Attachment: Cocoon-OJB-JDO.zip

http://localhost:8080/cocoon/ojbdemo/adduser*
http://db.apache.org/ojb/
http://db.apache.org/ojb/quickstart.html
http://db.apache.org/ojb/tutorial4.html
http://www-106.ibm.com/developerworks/java/edu/j-dw-javajdo-i.html
https://cwiki.apache.org/confluence/display/COCOON/OJBBlock
https://cwiki.apache.org/confluence/download/attachments/118164358/Cocoon-OJB-JDO.zip?version=1&modificationDate=1559813213000&api=v2

	OJBWithJDO

