
ResourceNaming
Cocoon allows you to assemble portions of reusable pipelines into . In their turn those start acting as if they are s, s, Resources Generator Transformer Serial

s or even full blown s by themselves.izer Pipeline

(pretty much like 'grouping' in a drawing application: multiple drawing-objects suddenly become one entity you can modify, bring to front, copy all over the
place)

The concept in fact allows you to somewhat define your own more specialized -components without the need to start coding Java. Resources Sitemap
However: your results will be limited to smart combinations of existing components.

You should mainly use them to achieve .CleanerSiteMapsThroughResources

The biggest drawback on the usage of in your pipelines, is that you tend to loose vision of what role these -parts are taking up. The fact Resources Pipeline
is that you can easily end up trying to e.g. put two s into one pipeline 'cause one of them could be hidden inside a Resource. Leading you Generator
straight to a lamentable run-time exception.

As a mild way to prevent such horrors to come upon you, you can make sure that the name you give to your help you see those differences.Resources

Resource Role Suggested prefix in the attributename Meaning

Generator generate- First in the pipe: Expects subsequent components after this resource

Tranformer tranform- Middle of the pipe: Expects components in front and after this resource

Serializer serialize- End of the Pipe: Expects components before this resource

Pipeline pipe- Does not stand any other components before or after

Example

A resource behaving as a Generator

 <map:resource name="generate-data-xml" >
 <map:generate type="weatherdata" src="{input-src}" />
 </map:resource>

A resource behaving as a Transformer

 <map:resource name="transform-data2svg" >
 <map:transform src="xsl/datafilter.xsl" />
 <map:transform src="xsl/data2svg.xsl" />
 </map:resource>

Three resources behaving as a full sPipeline

 <map:resource name="pipe-data-txt">
 <map:read mime-type="text/plain" src="{input-src}" />
 </map:resource>

 <map:resource name="pipe-data-xml">
 <map:call resource="generate-data-xml" >
 <map:parameter name="input-src" value="{input-src}" />
 </map:call>
 <map:serialize type="xml" />
 </map:resource>

 <map:resource name="pipe-data-svg">
 <map:call resource="generate-data-xml" >
 <map:parameter name="input-src" value="{input-src}" />
 </map:call>
 <map:call resource="transform-data2svg" />
 <map:serialize type="svgxml"/>
 </map:resource>
 </map:resources>

Updates

https://cwiki.apache.org/confluence/display/COCOON/Resources
https://cwiki.apache.org/confluence/display/COCOON/Generator
https://cwiki.apache.org/confluence/display/COCOON/Transformer
https://cwiki.apache.org/confluence/display/COCOON/Serializer
https://cwiki.apache.org/confluence/display/COCOON/Serializer
https://cwiki.apache.org/confluence/display/COCOON/Pipeline
https://cwiki.apache.org/confluence/display/COCOON/Resources
https://cwiki.apache.org/confluence/display/COCOON/Sitemap
https://cwiki.apache.org/confluence/display/COCOON/CleanerSiteMapsThroughResources
https://cwiki.apache.org/confluence/display/COCOON/Resources
https://cwiki.apache.org/confluence/display/COCOON/Pipeline
https://cwiki.apache.org/confluence/display/COCOON/Generator
https://cwiki.apache.org/confluence/display/COCOON/Resources
https://cwiki.apache.org/confluence/display/COCOON/Generator
https://cwiki.apache.org/confluence/display/COCOON/Transformer
https://cwiki.apache.org/confluence/display/COCOON/Pipeline

2003_05_28 (MarcPortier): See for a relevant remark on the cocoon-dev list on this topic here (on the side of the real subject of the thread, near
the end of the message)

http://marc.theaimsgroup.com/?l=xml-cocoon-dev&m=105407766715121&w=2

	ResourceNaming

