
1.
2.

3.
4.
5.
6.

7.
8.

9.

WoodyHibernateAndFlow
20031109: Updated for Cocoon CVS 2.1.3 (8 nov 2003) and for Hibernate 2.1b6

20031113: Updated the attachment. Removed the classes already supplied by Woody.

Read if the instructions below go too fast.UsingHibernateToMakeYourJavaBeansPersistent
Add the Hibernate jars from the Hibernate distribution to . Copy only the jars that are not yet present. And don't forget the WEB-INF/lib
Hibernate jar itself (it is not in the Hibernate lib directory)
Copy the content of of the zip file (see attachment) into your Cocoon .WEB-INF WEB-INF
Merge the line in into your real (this adds the Avalon component that creates the Hibernate session)_cocoon.xconf cocoon.xconf
Edit in . Insert your login credentials for your databasehibernate.properties WEB-INF/classes
Create tables in your database with the script. (Hibernate has support for many different databases. Change the SQL dialect in mysql.sql hibe

 and edit this script if don't use mysql but something else.rnate.properties
Copy the content (the woody map in the zip file) somewhere in your cocoon directory.
Restart Tomcat. Near the end of the debug info in the console, there should be a line . If you don't see this Hibernate initialize called
line, one of the points above went wrong.
Try http://...../woody/

This is how it works:

The Woody Java beans Contact, Sex, and Form2Bean are not modified.
The sitemap of the Woody example is not modified.
Two classes are added (The interface of an Avalon component and its implementation). This PersistenceFactory HibernateFactory
component creates the Hibernate session.
The flowscript is changed a little. The function tries to load the object from disk with a hard-binding_example.js form2bean Form2Bean
coded email address as the key. If it fails, it creates a new instance and saves it to disk.
The real beef is in the file . This configuration file tells WEB-INF\classes\org\apache\cocoon\woody\samples\Form2Bean.hbm.xml
Hibernate how to do the real work: hide all details about the one-to-many relation (contacts that are added to the bean) for the developer. When
you play with the example and look into the database, you can see that contacts are added with an unique key that is generated by Hibernate (the
id field; don't edit it, as the Woody intructions tell you) and a foreign key (the email address). In a real-world application, you almost always will
need the and attributes. But in this case, I wanted to stay as close as possible to the original classes of the Woody sample. lazy inverse

Hugo Burm

Attachment: Hibernate_Woody_Flow.zip

https://cwiki.apache.org/confluence/display/COCOON/UsingHibernateToMakeYourJavaBeansPersistent
https://cwiki.apache.org/confluence/download/attachments/118164695/Hibernate_Woody_Flow.zip?version=1&modificationDate=1559814275000&api=v2

	WoodyHibernateAndFlow

