
RegexpKeyedMap
A map that uses a regular expression as a key.

Author: Manik Surtani (manik at surtani dot org)

Purpose: To create a Java Map that allowed me to pass in any arbitrary String as a key to it's get() method, and for the Map implementation to attempt to
match this key against various regexp-keys it would store, and return any matching value (or null if nothing matches)

Dependencies: This class relies on v1.3 of Jakarta's Regexp package

Examples: Ok, that explanation above was rubbish. Nothing works quite as well as an example. Here we go:

RegexpKeyedMap map = new RegexpKeyedMap();
map.put("^Green.*$", "Your sentence starts with Green");
map.put("^Blue.*$", "Your sentence starts with Blue");
map.put("Orange", "Your sentence contains the word Orange");

// contains some stuff typed in my the user
String sentence = "Green apples happen to be my favourite";

// responseText will be "Your sentence starts with Green"
String responseText = map.get(sentence);

sentence = "I like green apples a lot";

// responseText will be null since nothing matched
responseText = map.get(sentence);

sentence = "Green apples and Oranges are both quite good";

// responseText will be indeterminate - it could be either of "Your sentence starts with Green"
// or "Your sentence contains the word Orange" - this is because the RegexpKeyedMap uses a HashMap
// to store its contents and ordering of elements is not guaranteed. The first match is returned.
responseText = map.get(sentence);

Source code:

package org.apache.regexp.collections;

import java.util.HashMap;
import java.util.Iterator;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;

/**
 * This map implementation uses a hashmap as the underlying storage.
 * Note that the keySet() method will return a set of regular expressions rather than actual keys.
 * The put() method uses a regexp as a key.
 * The get() method gets any value that matches one of the regexps. If there is more than one matching regexp,
the first one
 * encountered is returned - and hence could be indeterminate!
 *
 * @author Manik Surtani
 *
 */
public class RegexpKeyedMap extends HashMap
{
 public Object put(Object key, Object value)
 {
 if (key instanceof String)

 return super.put(key, value);
 else
 throw new RuntimeException("RegexpKeyedMap - only accepts Strings as keys.");
 }

 /**
 * The key passed in should always be a String. The map will return the first element whose key, treated
as a regular expression, matches the key passed in
 * NOTE: It is possible for this map to have more than one return value, for example, if a key is passed
into get() which matches more than one regexp.
 *
 * E.g., consider the following keys in the map - '[A-Za-z]*' and 'Hello'. Passing in 'Hello' as a key to
the get() method would match either of the regexps,
 * and whichever apears first in the map (which is indeterminate) will be returned.
 *
 */
 public Object get(Object key)
 {
 Iterator regexps = keySet().iterator();
 String keyString;
 Object result = null;

 String stringToMatch = cleanKey(key);

 while (regexps.hasNext())
 {
 keyString = regexps.next().toString();
 try
 {
 RE regexp = new RE(keyString);
 if (regexp.match(stringToMatch))
 {
 result = super.get(keyString);
 break;
 }
 }
 catch (RESyntaxException e)
 {
 // invalid regexp. ignore?
 }
 }
 return result;
 }

 /**
 * Strip any 'dirty' chars from the key we are searching for,
 * otherwise we end up with funny results from the RE
 *
 * @param obj
 * @return
 */
 private String cleanKey(Object obj)
 {
 String retVal = obj.toString();

 // remove any '^' from start of key - prevents the RE from matching !?!?
 return (retVal.charAt(0) == '^') ? retVal.substring(1) : retVal;
 }

}

Feedback: is very much appreciated! Let me know how this works for you, how it can be improved, etc.

	RegexpKeyedMap

