
JcrContentModelAreas

Areas (Authoring, Staging, Live)

This section refers to areas as abstract concepts, not necessarily modeled as separated content areas.

Requirements:

independent from each other (changes to /authoring/foo don't influence staging/foo)
self-contained

See also:

http://www.mail-archive.com/sling-dev@incubator.apache.org/msg05812.html (Felix Meschberger from the Sling team in favor of the multi-
workspaces approach)

Options:

Workspaces

Advantages:

Physically separated nodes with same UUID possible ("corresponding nodes" concept)
Separated, independent
Self-contained
Easy migration to an environment with separate authoring/staging/live repository servers + replication

Issues:

Changing the site structure requires to remove the involved nodes from all non-authoring areas (like now)
Copying access control definitions?
Node.update(workspace) copies the subtree:

either nodes must be kept in a flat structure (no hierarchy)
or nodes and properties must be copied manually
or use referenceable child nodes

/de
 /foo < mix:referenceable
 /lenya:document < mix:referenceable
 /jcr:content = "Hello"
 /bar

Publish single node:

getItem("/de/foo/lenya:document").update("staging");

Publish subtree:

getItem("/de/foo").update("staging");

Separated Areas in a Single Workspace

Advantages:

Simple access

Issues:

Copying access control definitions required
Different UUIDs:

Either rewrite links
Or don't use JCR UUIDs but custom String properties for UUIDs

Separated Areas in a Single Node

Example:

http://www.mail-archive.com/sling-dev@incubator.apache.org/msg05812.html

 /foo
 /lenya:authoring
 /jcr:content = "Hello"
 /lenya:staging
 /jcr:content = "Hello"
 /lenya:live
 /jcr:content = "Hello"
 /bar
 /lenya:authoring
 /…

Advantages:

Simple
Site structure can be changed without removing staged or published content

Issues:

Areas not self-contained
No direct URI-to-path mapping possible
Changes to site structure would be visible in all areas immediately

Labelled Versions

Issues:
All changes applied immediately, without calling Session.save()
Access control to version history?

Submit:

VersionHistory history = node.getVersionHistory();
Version base = node.getBaseVersion();
boolean move = true;
history.addVersionLabel(base.getName(), "staging", move);

Obtaining live version:

VersionHistory history = node.getVersionHistory();
Node liveVersion = history.getVersionByLabel("live");
Node liveNode = liveVersion.getChild("jcr:frozenNode");

	JcrContentModelAreas

