MetaStylesheets

Introduction

Meta stylesheets are stylesheets that generate other stylesheets. This technique is usually applied when you have an XML language whose behaviour can
be implemented using an XSLT. A stylesheet can then transform this language into it's XSLT implementation.

Essentially it's a code generation mechanism: you have a little language that declaratively describes what you want to happen, a code generator in XSLT
(the meta-stylesheet) which transforms this language into the implementation stylesheet.

There are several examples of this:

® For details on creating XSLT stylesheets that create other stylesheets, see XML Reflection
® Schematron — an XML validation language implemented as XSLT, see Schematron - Validating XML using XSLT for a tutorial
®* Web template languages — see the XML.com article Template Languages in XSLT for some relevant background

Overview
There are therefore two steps in using a meta-stylesheet:
1. Process your declarative processing description with the meta-stylesheet, generating the implementation stylesheet
2. Process your data with the implementation stylesheet, generating your output.
Here's how to do it in Cocoon. It's very easy!

Note: It is recommended to use Xalan as opposed to XSLTC for the transformation. Xalan is the default for Cocoon 2.0.4. For 2.1 it must be specified
by using t ype="xal an" in the <map: t r ansf or n> node.

How It's Done

<map: pi pel i ne>

<map: match pattern="ny. htm ">
<map: generate src="ny.xm"/>
<map: transform type="xal an" src="cocoon:/inpl enentation-styl esheet.xsl"/>
<map: serialize/>

</ map: mat ch>

</ map: pi pel i ne>

<map: pi pel i ne>

<map: mat ch pattern="i npl ement ati on-styl esheet. xsl ">
<map: generate src="process-description.xm"/>
<map: transform src="neta-styl esheet. xsl"/>
<map:serialize type="xm"/>

</ map: mat ch>

</ map: pi pel i ne>

Here we have two pipelines, each of which perform one steps outline above. The first pipeline does the actual work: it transforms our XML into HTML
results using the implementation stylesheet.

The implementation stylesheet is automatically generated by the second pipeline, which reads a processing description, transforms it with the meta-
stylesheet generating the desired implementation.

Because the implementation stylesheet is generated automatically the meta-stylesheet can take into account additional context, e.g. the request
parameters, when generating the results. This makes for very flexible processing.

— LeighDodds

Issues

| have been able to get this working using the cocoon:/ protocol (using 2.0.3), but | found that the dynamic stylesheets didn't appear to be cached, which
was a big performance hit. StephenNg

| also have been able to get this working using the cocoon:/ protocol (using 2.1.1), but the ‘transformed' xsl is not able to find any 'included' stylesheets.
(seems logical, but it is annoying. Is there a solution?)

Note

Always be aware of the fact that such a pipeline is not cached. E.g., if you have a time-consuming generator (like HTML which uses JTidy), split the
pipeline into two separate ones. Instead of

http://www.xml.com/pub/a/2003/11/05/xslt.html
http://www.ldodds.com/papers/schematron_xsltuk.html
http://www.xml.com/pub/a/2002/03/27/templatexslt.html
#
#

<map: mat ch pattern="*.htm ">
<map: generate src="{1}.htm "/ >
<map: transform src="cocoon:/{1}.xsl"/>
<map: serialize/ >

</ map: mat ch>

use

<map: match pattern="*.htm ">
<map: generate src="cocoon:/{1}.xm"/>
<map: transform src="cocoon:/{1}.xsl"/>
<map: serialize/>

</ map: mat ch>

<map: match pattern="*.xm ">
<map: generate src="{1}.htm"/>
<map: serialize type="xm"/>

</ map: mat ch>

In the latter case, the "*.xml" pipeline is cached and the overall performance is much better.

— AndreasHartmann

https://cwiki.apache.org/confluence/display/LENYA/AndreasHartmann

	MetaStylesheets

