
1.

Debugging DRLVM with GDB on Linux
This document describes the first steps for debugging DRLVM on Linux and provides some useful tips for successful debugging experience.

Enable Debug Build

Examine the components to decide which pieces of code you want do debug with GDB:
VM core
classlib's native part
JITs

They all are built in debug mode by default. So you should not care much. : If you want to start debugging right from the function , you have to Note main
rebuild in the debug mode, because belongs to the Harmony launcher, which is a part of .classlib main classlib

2. To set a debug configuration for explicitly, use " " when building DRLVM.VM core sh build.sh -Dbuild.cfg=debug

3. To build in the debug mode, use " ", which is the default (" " is the other option)classlib ant -Dhy.cfg=debug ant -Dhy.cfg=release

Before We Start GDB

Export for GDB:LD_LIBRARY_PATH

export LD_LIBRARY_PATH=$jre/bin:$jre/bin/default

Note: Any slashes at the end of each path and any symbolic links in the paths are prohibited.

Tip: To get the correct , which wouldn't trigger process re-execing in the launcher (this breaks GDB and you won't be able to debug LD_LIBRARY_PATH
VM), run some java program that does not finish immediately. Then take a look at /environ}} and copy the /proc/{{pidof java LD_LIBRARY_PATH
setting from it. This is the exact string, which launcher uses when it re-exacs the process. If you copy it exactly to setting, launcher will LD_LIBRARY_PATH
not do exec.

Put some common GDB idioms for DRLVM into the file that will we sourced at GDB startup:~/.gdbinit

1.
2.

Just a couple of cool things
#
set print pretty
set print object on

Needed to run with DRLVM (ignoring SIGUSR2 in debugger that happens during GC, for example)
#
handle SIGUSR2 nostop noprint

sr: execute all commands from file in current directory
it is useful to put commands like 'set args Hello' in .gdbc files
#
define sr
source .gdbc
end

prnthr <num_threads>
print stack traces in a given number of threads
#
TODO: print with verbose managed frames
#
define prnthr
 set $threadno = $arg0
 while ($threadno > 0)
 thread $threadno
 backtrace 20
 set $threadno = $threadno - 1
 end
end

brst <file>
store all breakpoints to <file> to make them easy to reload on future sessions
to reload just type 'source <file>'
undesired effect:
changes current logging file
bugs:
assumes logging was off
assumes perl is installed
#
define brst
set logging file /tmp/gdb.tmp.breaks
set logging on
info break
set logging off
shell perl -p -i -e 'if (/([^\s]*\.cpp:[0-9]*)/) { print "break $1\n"; } $_="";' /tmp/gdb.tmp.breaks
shell rm -f $arg0
shell cp /tmp/gdb.tmp.breaks $arg0
shell rm -f /tmp/gdb.tmp.breaks
end

As soon as you perform actions mentioned above, you can run GDB and, at least, see threads created, etc.

Debugging in GDB (or your favorite GUI, like DDD, kdb, etc.)

DRLVM is quite distributed between shared libraries, so it is not easy to set breakpoints somewhere in libraries' code. The possible approaches are the
following:

Drop in your code, rebuild and catch it via an ordinary run from within GDBasm("int3")
Stop at the position when nothing interesting happened, but all libraries are loaded

You can use completion of function names where you set the breakpoints. For example, type:

break 'Jitrino::IRBuilder::gen

press <TAB>, you can see some variants suggested, type more and select between them. The leading single quote (') is significant!

For the second approach, I use two custom GDB scripts:

"hstart" making the first stop on my favorite start point
"hrun" using those breakpoints to stop on the point with further runs in the GDB session

To get these scripts, drop these lines into your :~/.gdbinit

define hstart
break main
run
break hysl_open_shared_library
continue
finish
disable
break compile_jit_a_method
continue
disable
end

define hrun
en 1
run
en 2
continue
finish
disable
en 3
continue
disable
end

	Debugging DRLVM with GDB on Linux

