
JIT Development Tasks
This page contains a list of development tasks for the Harmony JIT compiler. If you are new to the JIT, go on and pick a simple task, but do not forget to let
us know about your choice in . Harder tasks are here to show main strategies of JIT development. Feel free to take them too.the mailing list

For Beginners

1. Improve command-line parameters handling

Problem: A lot of Jitrino.OPT algorithms use "magic numbers" or hardcoded parameters. See the example of the code with "magic numbers" in the vm
 file./jitrino/src/dynopt/StaticProfiler.cpp

Task: Refactor code to make it accept parameters using the PMF framework.

2. Improve IR logging code

Problem: Jitrino.OPT uses two intermediate representations (IR) to compile methods: High-level IR and Low-level IR. These IRs use the same base
package for Control Flow Graph, Nodes, Edges and Insts representation. However, due to historical reasons, the IR logging frameworks are different.

Task: Refactor and consolidate IR printing code for High and Low level IR representations.

Front End

3. Java bytecode translator refactoring

Problem: interaction between , , classes is very complicated and error-prone.ByteCodeParser JavaLabelPrepass JavaByteCodeTranslator

Task: Re-factor Java bytecode translator in the Jitrino.OPT to make the code cleaner and simplify the data structures used.

4. Clean-up IRBuilder to get rid of simpligier and HVN

Problem: IRBuilder has simplifier and hvn embedded which makes it difficult to use IRBuilder outside of translator.

Task: Re-factor IRBuilder to make it independent from simplifier and HVN. Add "simplify,hvn" optimization passes after translator in the pipeline.

Performance-related improvements in Jitrino.OPT

5. BBP

Task: Reduce overhead from Back Branch Polling: remove BBP from finite loops or reduce overhead, if loop finiteness is undetermined.

New optimizations in Jitrino high-level optimizer

6. Escape Analysis based on-stack allocation

Task: Implement EA-based on-stack allocation

7. Lock coalescing

Task: Implement Lock Coalescing optimization in Jitrino.OPT

Improvements in Jitrino.JET

8. Bytecode-based edge profiling in Jitrino.JET

Task: Bytecode-based edge profile supported by Jitrino.OPT compiler. After implementing on Jitrino.JET JIT may use JET-to-OPT recompilation schemes
and employ edge profile in dynamic optimizations in OPT.

Code Generator (CG) Optimizations

http://incubator.apache.org/harmony/mailing.html

9. IPF enabling

Problem: Jitrino.opt contains an IPF code generator, but the rest of the system has only experimental support this platform. For example, on IPF high-level
optimizer is disabled. Also, the Jitrino.OPT code generator needs more platform-specific optimizations and tuning.

Task: just do it

10. Branch optimization in IA32/Intel 64 CG

Problem: Analysis of the code generated by Jitrino on IA32 shows that many unnecessary branches could be eliminated.

Task: contact us for live examples and optimize them one by one

11. Register allocation improvements and tuning

Problem: Currently there are 2 global register allocators in Jitrino: bin-packing and color graph.

Task: Improve the register allocation in the following directions:

Profile-guided live-range splitting in the register allocators.
Tuning and enhancing the color graph RA.
Implementation of new register allocation schemes

12. Calling conventions

Problem: Currently the IA-32 CG uses calling conventions that pass all parameters on stack. Also, in both IA-32 and Intel64 CGs all used calling
conventions require returning FP values in x87 register stack and do not support callee-saved SSE registers while all FP arithmetic is done using SSE
/SSE2.

Task: Improve aggressive inlining, which reduces the overhead performance, in the following directions:

Passing arguments in GP and SSE registers
SSE-friendly calling conventions.
Pluggable calling conventions.

13. Short immediates in generated code

Problem: Currently, all the generated code with immediate constants uses 32 bit consts. Shrinking them for some (normally for ALU and conditional
branches) instructions will result in shorter and a bit faster code. (though the exact performance boost is not expected to be significant).

Task: Generate short 8bits immediate constants where possible.

Links

Jitrino chapter from the DRLVM developers guide

The mailing list for Harmony developers. Feel free to ask here.

http://incubator.apache.org/harmony/subcomponents/drlvm/developers_guide.html#JIT_Compiler
http://incubator.apache.org/harmony/mailing.html

	JIT Development Tasks

