
JvmInJava
Java-in-Java VMs deal with low-level memory management through a small set of type safe extensions, supported by the compiler, which allow
typed access to memory in a variety of ways. See for more information. JikesRVM docs
Having written an extensive high performance memory management toolkit, which includes a wide range of GC algorithms, and which can
outperform the standard glibc malloc(), I can assure you (as I and others have stated in previous posts), that a Java-in-Java VM is not
encumbered by any such limitations.
The Java-in-Java VM has some performance *advantages* through the lack of impedence mismatch between the supported language and the
implementation language (this is one of the reasons for 2. above).
There are a number of successful instances of this technology, including OVM, Jikes RVM, and Bartok (a C# in C# VM at MSR which can match
the MS product VM on some benchmarks, despite having vastly less resoures applied to it).
Having harmony Java code maximized will will also optimize the maintenability of the code. Mixed code (Java + native) is complex to debug and
required multiple expert skills that are quite rare.
Having Java-in-Java will also be profitable for the project management opportunities, as "Java interrested" developpers are also Java
developpers or Java experts. But the change that they are good potential C or C++ resources are much less.
Having Java-in-Java will help port of the VM on any new platform (from embeded to mainframe and portable devices)

See also The TechnicalFAQ

http://jikesrvm.sourceforge.net/api/org/vmmagic/unboxed/package-summary.html
http://wiki.apache.org/harmony/TechnicalFAQ

	JvmInJava

