JvminJdava

® Java-in-Java VMs deal with low-level memory management through a small set of type safe extensions, supported by the compiler, which allow
typed access to memory in a variety of ways. See JikesRVM docs for more information.

® Having written an extensive high performance memory management toolkit, which includes a wide range of GC algorithms, and which can
outperform the standard glibc malloc(), | can assure you (as | and others have stated in previous posts), that a Java-in-Java VM is not
encumbered by any such limitations.

® The Java-in-Java VM has some performance *advantages* through the lack of impedence mismatch between the supported language and the
implementation language (this is one of the reasons for 2. above).

® There are a number of successful instances of this technology, including OVM, Jikes RVM, and Bartok (a C# in C# VM at MSR which can match
the MS product VM on some benchmarks, despite having vastly less resoures applied to it).

® Having harmony Java code maximized will will also optimize the maintenability of the code. Mixed code (Java + native) is complex to debug and
required multiple expert skills that are quite rare.

® Having Java-in-Java will also be profitable for the project management opportunities, as "Java interrested" developpers are also Java
developpers or Java experts. But the change that they are good potential C or C++ resources are much less.

® Having Java-in-Java will help port of the VM on any new platform (from embeded to mainframe and portable devices)

See also The TechnicalFAQ

http://jikesrvm.sourceforge.net/api/org/vmmagic/unboxed/package-summary.html
http://wiki.apache.org/harmony/TechnicalFAQ

	JvmInJava

