
Subroutine Verification
Motivation and Problem Statement

The  is an important part of Java security and is checked by TCK. While modern compilers do not generate subroutines, to pass TCK, bytecode verification
we need to support any aspect of the verification including the .subroutine verification

We created a modular , which then reused the data flow analysis for programs without subroutines. Inlining approach allows supporting subroutine inliner
a bigger subset of type-safe programs [3], for example, the programs generated by bytecode optimizers. While our solution is compatible with specification, 
it can be easily tuned and extended to different safe program sets.

Definitions

Common Terms

Subroutines are sets of nodes whose stack maps may depend on a calling context. Since the specification disables subroutines to merge their 
execution paths into a single  instruction we identify subroutines with their  instructions.ret ret
A  is a sequence of  instructions needed to reach the subroutine.subroutine context jsr
Inlining subroutine means duplicating subroutine nodes for each calling context. In other words, we need an only call sequence for each 
subroutine copy. 

Special Nodes in a Control Flow Graph

Graph terminals are  and . The  node has an out edge to the first basic block of code, and  node collects out edges from all start end start end return
instructions.
jsri and  are the nodes corresponding to the -th  instruction in order of appearance.  is the node which ends with the correspondent subi i jsr jsri jsr

call and  is a subroutine entry point.subi
retj nodes contain the -th  instruction. j ret

Graph Node Marks

Each graph node is either reachable from the first node or not. This is represented by a boolean flag .vf_Node_s.reachable

Also, nodes are either a part of subroutine or a top level code:

A graph node is either an .unknown code
Or a graph node is a .top level code
Or a graph node is a part of a subroutine with a specified  node.retj

This marking separates subroutines from the rest of the code and provides enough information for a subsequent subroutine inlining.

Finding Subroutines

Here is an algorithm sketch.

Initially all nodes are marked as not reachable except the  node.  and  nodes are marked as a top level code. We traverse graph start start end
recursively following out branches and marking nodes as reachable.
Any node reachable from the  is marked as the , see .top level code top level code vf_traverse_top_level_code(node)
Nodes reachable from the  are marked as the , see .unknown code unknown code code_t vf_traverse_unknown_code(node)
For  node we follow a call branch to resolve where the call to a subroutine is returned. The subroutine entry point  starts with the jsri subi unknown 

 type.code
While traversing the nodes of the  type we do the following:unknown code

Perform a simple data flow analysis for subroutine return addresses. It seems that we get a compatible implementation when identify 
return addresses with correspondent entry nodes  and merge different entry points into unusable values.subi
We maintain a stack of subroutine entry points  and correspondent  nodes. If we encounter the same  again, we report subi jsri jsri java.

.lang.VerifyError: Recursive call to jsr entry
A local variable map allows us to resolve a subroutine entry point when coming to  and a correspondent return address. We have to verify the retj
following at this step:

No code loads a return address into local variable.
Any return address is used no more than once.
Any instruction has a fixed stack depth.

Before returning from  we resolve the  type of a node in a following way:vf_traverse_unknown_code unknown code
If any out edges points to  code, we set a code type of the node to . If there is more than one return from the subroutine, we report retj retj

.java.lang.VerifyError: Multiple returns to single jsr
If all node's out edges point to the , we mark the node as the  and return to the previous node.top level code top level code
If there are still out edges which point to nodes of the  type, we call to . unknown code vf_traverse_unknown_code

[1] .JVM specification

[2] Leroy, X. .Java Bytecode Verification: Algorithms and Formalizations

http://svn.apache.org/viewvc/harmony/enhanced/drlvm/archive/vm/verifier/
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://gallium.inria.fr/~xleroy/publi/bytecode-verification-JAR.pdf


[3] Coglio, A. .Simple Verification Technique for Complex Java Bytecode Subroutines

http://www.kestrel.edu/home/people/coglio/ftjp02.pdf

	Subroutine Verification

