GenDoc

Gen: A Java Package for Constructing and Manipulating Abstract Syntax
Trees

Gen is a Java preprocessor that extends the Java language with special syntax to make the task of handling Abstract Syntax Trees (ASTs) easier. Two
classes are used by Gen: the class Tr ee that captures an AST (with subclasses VariableLeaf, IntegerLeaf, FloatLeaf, StringLeaf, and Node), and the class
Tr ees that captures a list of ASTs (see the Appendix for the detailed API). A Tr ee is a tree-like data structure, which is used for representing various tree-
like data structures used in compiler construction.

For example, the Java expression

new Node(" Bi nop",
Trees. ni |l .append(new Vari abl eLeaf ("Pl us"))
. append(new Vari abl eLeaf ("x"))
. append(new Node(" Bi nop",
Trees. nil . append(new Vari abl eLeaf ("M nus"))
. append(new Vari abl eLeaf ("y"))
. append(new Vari abl eLeaf ("z2")))))

constructs the AST Bi nop(Pl us, x, Bi nop(M nus, y, z)) . To make the task of writing these tree constructions less tedious, Gen extends Java with the
syntactic form #< >. For example,

#<Bi nop(Pl us, x, Bi nop(M nus, y, z)) > is equivalent to the above Java expression. That is, the text within the brackets #< > is used by Gen to
generate Java code, which creates the tree-like form (an instance of the class Tr ee) that represents this text. Values of the class Tr ee can be included
into the form generated by the #< > brackets by "escaping" them with a backquote character (*). The operand of the escape operator (the backquote
operator) is expected to be an expression of type Tr ee

that provides the value to "fill in" the hole in the bracketed text at that point (actually, an escaped string/int/float is also lifted to a Tree). For example, in

Tree X #<join(a, b, p)>;
Tree y = #<select(x,q)>;
Tree z = #<project('y, A >;

y is set to #<sel ect (j oi n(a, b, p),) >and

z to #<proj ect (sel ect (joi n(a, b, p), q), A) >. There is also bracketed syntax, #[] , for constructing instances of Trees.

The bracketed syntax takes the following form:

bracketed ::=

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="

9de36748-b721-48a5-bf4d-de17d848ccad"><ac:plain-text-body><![CDATA[

expr =

integer

float

string
" name
(" code)"

name "("arg","..."," arg ")"

" name "("arg","..."," arg ")"

arg ;=

" " name

"...(" code ")"

"#<" expr ">" a Tree construction
(an AST)
"#["arg"," ... " arg "T" a Trees construction |]]></ac:plain-text-body><
(a list of ASTs) lac:structured-macro>
name the representation of

a variable name
the representation of an integer

the representation of a float
number

the representation of a string
escaping to the value of nane
escaping to the value of code

the representation of a Node
with zero or more children

the representation of a Node
with escaped name

expr the representation of
an expression

escaping to a list of ASTs
(Trees) bound to name

escaping to a list of ASTs
(Trees) returned by code

where code is any Java code. The #< " (code) > embeds the value returned by the Java code code of type
Tr ee to the term representation inside the brackets. For example, #<{{f (6, ...r, g("ab", (k@)),‘y)>}} is equivalent to the following Java code:

new Node(f,
Trees. ni | . append(new | nt egerLeaf (6))

. append(r)

. append(new Node("g", Trees. ni | .append(new StringLeaf ("ab"))
-append(k(x))))

-append(y))

If f="h",y=#<m(1,"a") > and k)

returns the value #<8>, then the above term is equivalent to

#<h(6, g("ab", 8),m1,"a"))>. The three dots (. . .) construct is used to indicate a list of children in a Node. Since this list is an instance of the class T
rees, the type of nanme in . . . nane is also Tr ees. For example, in

Trees r = #[join(a,b,p),select(c,q)];
Tree z = #<project(...r)>;

z will be bound to #<pr oj ect (j oi n(a, b, p), sel ect (c, q)) >. Finally, to iterate over Trees, use a for-loop:

for (Tree v: #[a,b,c])
Systemout. println(v);

Gen provides a case statement syntax with patterns. Patterns match the

Tr ee representations with similar shape. Escape operators applied to variables inside these patterns represent variable patterns, which "bind" to
corresponding subterms upon a successful match. This capability makes it particularly easy to write functions that perform source-to-source
transformations. A function that simplifies arithmetic expressions can be expressed easily as:

Tree simplify (Tree e) {
match e {
case plus(x,0):
case times(x,1):
case tines(x,0):
case _: return eg;

}

return x;
return x;
return #<0>;

where the _ pattern matches any value. For example, si npl i fy(#<ti nes(z, 1) >) returns #<z>, since ti mes(z, 1) matches the second case pattern.
The syntax of the case statement is:

case_stmt ::= "match" code "{" case ... case "}"
case = "case" pattern ":" code
pattern ::= name exact match with a
name
integer exact match with an integer
float exact match with a float number
string exact match with a string
""" name match any Tree and bind nane to the matched value
name "("arg","...","arg ")" match with a Node with a given name and match the Node
children
""name "("arg","..."," arg match the Node children and bind nane to the Node name
"y
- match any Tree
arg .= pattern match with a pattern
".." name match with a list of ASTs (Trees) and bind narme to the matched

list

match any arguments

For example, the pattern * f (. . . r) matches any Node: when it is matched with

#<join(a, b, c)>, itbhindsf tothe string"j oi n"

and r to the list #[a, b, c] . Another example is the following function that adds the terms #<8> and #<9>
as children to any Node e:

Tree add_arg (Tree e) {

match e {

case “f(...r): return #<f(8,9,...r1)>;
case 'x: return x;

}

The special keyword fail is used in Gen to abort the current matching and skip to the next case. For example

match e {
case f(...r,join("x, y),...s):
if (x.equals(y))
return #<f(...r, x,...8)>;
else fail;
case 'x: return x;
}

will transform j oi n({{x, }}y) tox if x isequaltoy
(it is not permitted to use a variable twice in a pattern, that is, j oi n({{x, }}x)
is an illegal pattern).

Appendix: The Tree API

The class Tr ee captures an AST, and the class Tr ees captures a list of ASTs. A Tr ee is a tree-like data structure, which is used for representing various
tree-like data structures used in compiler construction.

abstract
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

}

class Tree {

C
Cc
C
C
Cc
C
C
Cc
C

bool ean i s_node (); 11
bool ean is_variable (); //
bool ean is_long (); /1
bool ean is_string (); /1
bool ean is_double (); /1
String variablevValue ();//
I ong I ongVal ue (); /1

String stringvalue (); //
doubl e doubl evalue (); [//

cl ass Variabl eLeaf extends Tree {
public VariableLeaf (String s);
public String value ();

}

class LongLeaf extends Tree {
public LongLeaf (long n);
public long value ();

}

cl ass Doubl eLeaf extends Tree {
publ i c Doubl eLeaf (double n);
public double value ();

}

class StringLeaf extends Tree {
public StringLeaf (String s);
public String value ();

}

cl ass Node extends Tree {

public Node (String n,

public String nane ();
public Trees children ();

is
is
is
is
is
ret
ret
ret
ret

Trees cs);

this a Node?

this a Variabl eLeaf ?
this a LongLeaf?
this a StringLeaf?

this a Doubl eLeaf ?
urn the variabl e nanme
urn the Iong val ue
urn the string val ue
urn the doubl e val ue

/1 construct a new Node with a given nane n and children cs
/1 Node | abel
/1 Node children

where the Tr ees class represents a list of ASTs (a linked list):

class Trees inplenents Iterabl e<Tree> {

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

Tree
Trees
Trees
final
Trees
Trees
Trees

head();

tail();

(Tree e, Trees t);
static Trees nil;
cons (Tree e);
append (Tree e);
append (Trees s);

bool ean is_enpty ();
int length ();

Trees

reverse ();

bool ean menber (Tree e);
Tree nth (int n);

To iterate over Trees, one can use Java iterators:

Trees ts

for(Tree e:

ts)

Systemout.println(e);

the head of the Iist

the rest of the list (the list wthout the head)

construct a new list with head e and tail t

the enpty list (sanme as #[])

put the element e before the |ist

append the element e at the end of |ist (does not change 'this')
append the list s at the end of list (does not change 'this'")
is this an enpty list?

return the list length

return the reverse of the list (does not change 'this')

is e a menber of the list?

return the nth list el ement

	GenDoc

