
GenDoc
Gen: A Java Package for Constructing and Manipulating Abstract Syntax
Trees
Gen is a Java preprocessor that extends the Java language with special syntax to make the task of handling Abstract Syntax Trees (ASTs) easier. Two
classes are used by Gen: the class that captures an AST (with subclasses VariableLeaf, IntegerLeaf, FloatLeaf, StringLeaf, and Node), and the class Tree

 that captures a list of ASTs (see the for the detailed API). A is a tree-like data structure, which is used for representing various tree-Trees Appendix Tree
like data structures used in compiler construction.

For example, the Java expression

new Node("Binop",
 Trees.nil.append(new VariableLeaf("Plus"))
 .append(new VariableLeaf("x"))
 .append(new Node("Binop",
 Trees.nil.append(new VariableLeaf("Minus"))
 .append(new VariableLeaf("y"))
 .append(new VariableLeaf("z")))))

constructs the AST . To make the task of writing these tree constructions less tedious, Gen extends Java with the Binop(Plus,x,Binop(Minus,y,z))
syntactic form . For example,#< >

 is equivalent to the above Java expression. That is, the text within the brackets is used by Gen to #<Binop(Plus,x,Binop(Minus,y,z))> #< >
generate Java code, which creates the tree-like form (an instance of the class) that represents this text. Values of the class can be included Tree Tree
into the form generated by the brackets by "escaping" them with a backquote character (`). The operand of the escape operator (the backquote #< >
operator) is expected to be an expression of type Tree
that provides the value to "fill in" the hole in the bracketed text at that point (actually, an escaped string/int/float is also lifted to a Tree). For example, in

 Tree x = #<join(a,b,p)>;
 Tree y = #<select(`x,q)>;
 Tree z = #<project(`y,A)>;

y is set to and#<select(join(a,b,p),q)>
 to . There is also bracketed syntax, , for constructing instances of Trees.z #<project(select(join(a,b,p),q),A)> #[]

The bracketed syntax takes the following form:

bracketed ::= "#<" expr ">" a Tree construction
(an AST)

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="
9de36748-b721-48a5-bf4d-de17d848ccad"><ac:plain-text-body><![CDATA[

"#[" arg "," ... "," arg "]" a Trees construction
(a list of ASTs)

]]></ac:plain-text-body><
/ac:structured-macro>

expr ::= name the representation of
a variable name

integer the representation of an integer

float the representation of a float
number

string the representation of a string

"`" name escaping to the value of name

"`(" code ")" escaping to the value of code

name "(" arg "," ... "," arg ")" the representation of a Node
with zero or more children

"`" name "(" arg "," ... "," arg ")" the representation of a Node
with escaped name

arg ::= expr the representation of
an expression

"..." name escaping to a list of ASTs
(Trees) bound to name

"...(" code ")" escaping to a list of ASTs
(Trees) returned by code

where is any Java code. The embeds the value returned by the Java code of typecode #< `(code) > code
 to the term representation inside the brackets. For example, (k)),`y)>}} is equivalent to the following Java code:Tree #<{{f(6,...r,g("ab",

new Node(f,
 Trees.nil.append(new IntegerLeaf(6))
 .append(r)
 .append(new Node("g",Trees.nil.append(new StringLeaf("ab"))
 .append(k(x))))
 .append(y))

If , , and f="h" y=#<m(1,"a")> k
returns the value , then the above term is equivalent to#<8>

. The three dots () construct is used to indicate a list of children in a Node. Since this list is an instance of the class #<h(6,g("ab",8),m(1,"a"))> ... T
, the type of in is also . For example, inrees name ...name Trees

 Trees r = #[join(a,b,p),select(c,q)];
 Tree z = #<project(...r)>;

z will be bound to . Finally, to iterate over Trees, use a for-loop:#<project(join(a,b,p),select(c,q))>

for (Tree v: #[a,b,c])
 System.out.println(v);

Gen provides a case statement syntax with patterns. Patterns match the
 representations with similar shape. Escape operators applied to variables inside these patterns represent variable patterns, which "bind" to Tree

corresponding subterms upon a successful match. This capability makes it particularly easy to write functions that perform source-to-source
transformations. A function that simplifies arithmetic expressions can be expressed easily as:

 Tree simplify (Tree e) {
 match e {
 case plus(`x,0): return x;
 case times(`x,1): return x;
 case times(`x,0): return #<0>;
 case _: return e;
 }
 }

where the pattern matches any value. For example, returns , since matches the second case pattern. _ simplify(#<times(z,1)>) #<z> times(z,1)
The syntax of the case statement is:

case_stmt ::= "match" code "{" case ... case "}"

case ::= "case" pattern ":" code

pattern ::= name exact match with a
name

integer exact match with an integer

float exact match with a float number

string exact match with a string

"`" name match any Tree and bind to the matched valuename

name "(" arg "," ... "," arg ")" match with a Node with a given name and match the Node
children

"`" name "(" arg "," ... "," arg
")"

match the Node children and bind to the Node namename

"_" match any Tree

arg ::= pattern match with a pattern

"..." name match with a list of ASTs (Trees) and bind to the matched name
list

"..." match any arguments

For example, the pattern matches any Node: when it is matched with`f(...r)
, it binds to the string #<join(a,b,c)> f "join"

and to the list . Another example is the following function that adds the terms and r #[a,b,c] #<8> #<9>
as children to any Node :e

 Tree add_arg (Tree e) {
 match e {
 case `f(...r): return #<`f(8,9,...r)>;
 case `x: return x;
 }
 }

The special keyword fail is used in Gen to abort the current matching and skip to the next case. For example

 match e {
 case `f(...r,join(`x,`y),...s):
 if (x.equals(y))
 return #<`f(...r,`x,...s)>;
 else fail;
 case `x: return x;
 }

will transform to if is equal to join({{x,}}y) x x y
(it is not permitted to use a variable twice in a pattern, that is, join({{x,}}x)
is an illegal pattern).

Appendix: The Tree API

The class captures an AST, and the class captures a list of ASTs. A is a tree-like data structure, which is used for representing various Tree Trees Tree
tree-like data structures used in compiler construction.

abstract class Tree {
 public boolean is_node (); // is this a Node?
 public boolean is_variable (); // is this a VariableLeaf?
 public boolean is_long (); // is this a LongLeaf?
 public boolean is_string (); // is this a StringLeaf?
 public boolean is_double (); // is this a DoubleLeaf?
 public String variableValue ();// return the variable name
 public long longValue (); // return the long value
 public String stringValue (); // return the string value
 public double doubleValue (); // return the double value
}
class VariableLeaf extends Tree {
 public VariableLeaf (String s);
 public String value ();
}
class LongLeaf extends Tree {
 public LongLeaf (long n);
 public long value ();
}
class DoubleLeaf extends Tree {
 public DoubleLeaf (double n);
 public double value ();
}
class StringLeaf extends Tree {
 public StringLeaf (String s);
 public String value ();
}
class Node extends Tree {
 public Node (String n, Trees cs); // construct a new Node with a given name n and children cs
 public String name (); // Node label
 public Trees children (); // Node children
}

where the class represents a list of ASTs (a linked list):Trees

class Trees implements Iterable<Tree> {
 public Tree head(); // the head of the list
 public Trees tail(); // the rest of the list (the list without the head)
 public Trees (Tree e, Trees t); // construct a new list with head e and tail t
 public final static Trees nil; // the empty list (same as #[])
 public Trees cons (Tree e); // put the element e before the list
 public Trees append (Tree e); // append the element e at the end of list (does not change 'this')
 public Trees append (Trees s); // append the list s at the end of list (does not change 'this')
 public boolean is_empty (); // is this an empty list?
 public int length (); // return the list length
 public Trees reverse (); // return the reverse of the list (does not change 'this')
 public boolean member (Tree e); // is e a member of the list?
 public Tree nth (int n); // return the nth list element
}

To iterate over Trees, one can use Java iterators:

Trees ts = ...;
for(Tree e: ts)
 System.out.println(e);

	GenDoc

