
Kmeans

K-means Clustering on MRQL

The following instructions assume that you have already installed Hadoop in your cluster and you have tested it using some examples. The following tests
use the k-means clustering query .kmeans.mrql

Run K-means Clustering on a Hadoop ClusterMapReduce

First, you need to generate random ponts and store them in a HDFS file using the MRQL program :points.mrql

mrql -dist points.mrql 1000000

This will create 1M points and will store them in HDFS as the sequence file . You can adjust this number to fit your cluster. Then, run the k-points.bin
means clustering in MapReduce mode using:

mrql -dist -nodes 10 kmeans.mrql

where specifies the max number of MapReduce reducers.-nodes

Run K-means Clustering on a Hama Cluster

To run the same query using Hama, you need to know the number of simultaneous BSP tasks that can run in parallel on your Hama cluster without a
problem. For example, if you have 16 nodes with 4 cores each, you need to set less than 64, eg 50. First, you need to generate random points -nodes
and store them in a HDFS file (if you haven't done so for the MapReduce example):

mrql.bsp -dist -nodes 50 points.mrql 1000000

This will create 1M points and will store them in HDFS as the sequence file . You can adjust this number to fit your cluster. Then, run the k-points.bin
means clustering in BSP mode using:

mrql.bsp -dist -nodes 50 kmeans.mrql

Run K-means Clustering on a Spark Standalone Cluster

To run the same query using Spark, change the SPARK_MASTER and FS_DEFAULT_NAME in to point to your Spark cluster conf/mrql-conf.sh
URLs. Then, you need to generate random points and store them in a HDFS file (if you haven't done so for the other examples):

mrql.spark -dist -nodes 50 points.mrql 1000000

This will create 1M points and will store them in HDFS as the sequence file . You can adjust this number to fit your cluster. Then, run the k-points.bin
means clustering in BSP mode using:

mrql.spark -dist -nodes 50 kmeans.mrql

https://cwiki.apache.org/confluence/display/MRQL/Kmeans.mrql
#
https://cwiki.apache.org/confluence/display/MRQL/Points.mrql

	Kmeans

