
PojoServices
Problem Description
AchimHuegen, July 6 2004, 1.0beta

Services must be interfaces. Plain java objects are not supported.

Maintenance of interfaces is extra work (two units, linked javadoc)
Prototyping is more difficult
Adoption of  for new developers is more difficult HiveMind

Proposed Solution
Allow the use of java classes in the interface attribute of a service-point.

Example:

   <service-point id="POJO" interface="java.text.SimpleDateFormat">
                <invoke-factory service-id="hivemind.BuilderFactory" model="primitive">                        
                        <construct class="java.text.SimpleDateFormat">
                                <string>MM/yy</string>
                        </construct>
                </invoke-factory>
   </service-point>

In fact it is very easy to implement, just remove the interface check from #lookupServiceInterface and hivemind is ready for POJOs. ServicePointImpl
Better: Let the serviceModel decide whether it want to support non-interface classes.

Interceptor support should be extended to support both POJOs (without final methods) and interfaces. This can be achieved by switching from inheritance 
to composition. For example a  shouldn't specialize  but hold a reference to a  (non LoggingInterceptor AbstractLoggingInterceptor LoggingInterceptor
abstract counterpart of ) and delegate all the work to this instance.AbstractLoggingInterceptor

Discussion
HowardLewisShip:  HiveMind already has a facility for creating POJOs (BeanFactory). However, HiveMind is also supposed to be about  -1 best practices
including coding to interfaces. I'm not interested in  I'm interested in  constructs.nice-to-haves specifically useful

AchimHuegen: The POJOs that a  produces are no singletons (ignoring the caching) and can not be used for configuring another service. The BeanFactory
POJOs itself can not be configured. Some of these problems could be solved by your "something nifty with translators" improvements in combination with P

. So I would appreciate a +1 for .rototypeBeanFactory PrototypeBeanFactory

If you don't want to include POJO services in the distribution, what about leaving the decision to support POJOs to the ? The  user ServiceModel HiveMind
could still use POJOs if he really want to ignore the best practises by implementing a new service model.

KnutWannheden: I don't want to start a religious war here, but implementing this request is IMHO important enough to take the risk 

It's the best practices argument which got me thinking. Being an XP and TDD enthusiast I quite like the  DoTheSimplestThingThatCouldPossiblyWork
practice. Quote: ... pick something you can do and do quickly, so that you can get on with the other things you really need to do. Then do that thing 

 In context I think defining a POJO as a service is the simplest thing that could possibly professionally and well, complete with all appropriate refactoring.
work. The exact service interface may not crystallize until later on in development. Refactoring tools are very important when employing this practice. 
Imagine a  refactoring in Eclipse linked to the Extract Interface refactoring: It would both extract an interface from the POJO class and update the HiveMind

 definition in the descriptor. Or how about a warning marker next to a POJO service in the descriptor?service-point

In summary I think coding to interfaces is most definitely a best practice, but as an  I think it is impeding the getting-there. It's a matter of enforced practice E
.nablingAttitude

https://cwiki.apache.org/confluence/display/HIVEMIND/AchimHuegen
#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/HIVEMIND/HowardLewisShip
https://cwiki.apache.org/confluence/display/HIVEMIND/AchimHuegen
#
https://cwiki.apache.org/confluence/display/HIVEMIND/PrototypeBeanFactory
https://cwiki.apache.org/confluence/display/HIVEMIND/PrototypeBeanFactory
https://cwiki.apache.org/confluence/display/HIVEMIND/PrototypeBeanFactory
#
#
https://cwiki.apache.org/confluence/display/HIVEMIND/KnutWannheden
http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
#
http://www.martinfowler.com/bliki/EnablingAttitude.html
http://www.martinfowler.com/bliki/EnablingAttitude.html

	PojoServices

