
FontLibrary
Here we discuss the problem of using java.awt.Font within a restricted environment, and the requirements on both FOP and Batik to resolve this.

java.awt.Font provides a map of character sequences to glyph sequences, together with the means to render the glyph sequence to a Java2D graphic 
object.  The class coordinates with the JVM to load font data from OS configured fonts (so-called ‘system fonts’).  Unfortunately this mechanism has a few 
short falls: Managing system fonts becomes problematic within a Cloud-like environment#.  System fonts must be available to all JVM hosts increasing 
deployment complexities.  Further to this, the JVM is only guaranteed to support PS Type 1 and TrueType font formats and as such awt.Font only caters 
for these formats.  FOP supports a wider set of font formats (for example AFP) and so a more general purpose font representation is required.

FOP uses font data for performing text layout and font embedding, and in both cases font parsing is handled without the AWT.  Batik also performs some 
custom font handling.  Both projects independently parse TrueType fonts suggesting another need for a common font library.

A solution will provide a font source neutral font abstraction that can be shared by both FOP and Batik.  In traditional environments, the AWT system may 
be utilised but a centralised mechanism should be available that allows the configuration of alternative font loading schemes.  Alternative loading strategies 
could also leverage awt.Font since the createFont method reads font data from an InputStream that could be provisioned in a manner that supports 
restricted IO and a more granular access control.

Since Batik heavily relies on Java2D to render SVG, we will still have to use AWT fonts. It should be possible to create subclasses of java.awt.Font that will 
encapsulate other fonts formats (TrueType for embedding in PDF by FOP, AFP, etc.).

Batik

<ac:structured-macro ac:name="unmigrated-wiki-
markup" ac:schema-version="1" ac:macro-id="
bdc8996b-5326-4e4c-9406-0b2a5bdd700e"><ac:
plain-text-body><![CDATA[

File [Method] D
e
s
cr
ip
ti
on

]]></ac:plain-
text-body><
/ac:
structured-
macro>

gvt/font/FontFamilyResolver.java Loads system fonts - we can make this depend upon an configurable font-loading component

gvt/font/AWTGVTFont.java AWTGVTFont(Font, 
double)

Controlled - only called in StrokingTextPainter.createModifiedACIForFontMatching - we plan to bypass this

gvt/font/AWTGVTFont.java AWTGVTFont(String, 
int, int)

Controlled - called in FontFamilyResolver

gvt/font/AWTGVTFont.java AWTGVTFont(Map) gvt/text/GlyphLayout.getFont() calls this only as a fallback. This method is called by the GlyphLayout constructor. All 
calls of this constructor originate from StrokingTextPainter, so that’s under control. extension/svg/GlyphIterator
(AttributedCharacterIterator, !GVTGlyphVector), extension/svg/GlyphIterator.nextChar: ultimately called only by 
StrokingTextPainter, so should be under control

bridge/FontFace.java getFontFamily
(BridgeContext, ParsedURL)

Font.createFont(Font.TRUETYPE_FONT, InputStream!) - will have to be modified to make use of the URI resolution

WMF to SVG: used by FOP to render WMF 
images

 

transcoder/wmf/tosvg/WMFHeaderProperties.java 
readRecords

creates an AWT font out of the font properties stored in the WMF file; Will have to be adapted to the new font 
infrastructure (although not referenced in Batik code)

transcoder/wmf/tosvg/WMFPainter.java no way to pass a custom font resolver (spi ImageConverter thingie). Might have to leave it there for now

transcoder/wmf/tosvg/WMFFont.java just passed an AWT Font whose creation is controlled in the two methods above

transcoder/wmf/tosvg/AbstractWMFPainter.java 
getAttributedString()

font obtained from possibly passed Graphics2D. Normally the font has been set earlier to a controlled value

The following classes have been moved to XGC  

ext/awt/g2d/GraphicContext.java Font member: default font will have to be obtained from font sub-system

ext/awt/g2d/DefaultGraphics2D.java 
getFontMetrics()

may have to bypass fmg and get the metrics directly from the font

In XGC  

java2d/GraphicContext.java default font will have to be obtained from font sub-system, or systematically overridden by calling setFont. The 
constructor is called at 17 different places, which may involve quite some work

java2d/DefaultGraphics2d.java dodgy things with fmg but this class is not used anywhere

The following classes use java.awt.Font, but can be left as is

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="1cdda35f-ccc5-
4422-8136-93b73a60a498"><ac:plain-text-body><![CDATA[

File [Method] Descri
ption

]]></ac:plain-text-body></ac:
structured-macro>

svggen API for Java 2D -> SVG Dom  

svggen/SVGFont.java Creates an SVG font from an awt.
Font

svggen/SVGGeneratorContext.java  

svggen/SVGGraphics2D.java Used to output SVG only, does not 
need to be adapted

Used with Swing API  

apps/svgbrowser/JSVGViewerFrame.java  



apps/svgbrowser/PreferenceDialog.java  

apps/svgbrowser/Main.java  

util/gui/MemoryMonitor.java  

util/gui/xmleditor/XMLContext.java  

util/gui/xmleditor/XMLEditorKit.java  

util/gui/xmleditor/XMLTextEditor.java Used for swing, does not need to 
be adapted

util/PreferenceManager.java  

FOP

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-
id="7a8070f6-66bd-4a19-882c-d196379b91c0"><ac:plain-text-body><![CDATA[

File [Method] Desc
ription

]]></ac:plain-text-
body></ac:structured-
macro>

afp/AFPGraphics2D.java Implements Graphics2D for generating GOCA (e.g rendering 
SVG)

afp/svg/AFPTextHandler.java drawString gets a FOP font matching an AWT font. Needs change.

fonts/FontInfo.java getFontInstanceForAWTFont() should disappear

Java2D Renderers: inherently dependent on AWT fonts, normally no changes 
necessary

 

render/java2d/CustomFontMetricsMapper.java  

render/java2d/InstalledFontCollections.java  

render/java2d/Java2DFontMetrics.java  

render/java2d/Java2DGraphicsState.java  

PCL Renderer: normally nothing to do, PCL uses AWT fonts  

render/ps/NativeTextHandler.java gets a FOP font matching an AWT font. Needs change.

svg/PDFDocumentGraphics2D.java drawString() AWT font used when stroking is needed. Can be left as is

svg/PDFGraphics2D.java drawString() drawString(): gets a FOP font matching an AWT font. Needs 
change; getFontMetrics: used only by Java2D renderers

svg/SVGUtilities not used anywhere


	FontLibrary

