LogAnalysis

Suggestions and Recipes for Log Analysis

Please add your tips and tricks to this page. Extraction scripts and Excel Macros etc welcome!

See also JmeterMeter - Perl scripts for analysing the run log (jmeter.log)

Generating Appropriate JMeter Logs

The default data logged during JMeter testing is quite sparse - important request and response fields are stored, but the full response sent back by the
server is not stored. This is done to avoid bogging down the test client during load testing.

Using the following JMeter parameters on the command line generates log entries with corresponding higher detail for the test run.

-Jj neter.save. saveservi ce. data_type=true -Jjneter.save. saveservice. |l abel =true -Jjneter.save.saveservice.
response_code=true -Jjneter.save.saveservi ce.response_data=true -Jjneter.save.saveservi ce.response_nessage=true
-Jj neter. save. saveservi ce. successful =true -Jjneter.save. saveservice.thread_name=true -Jjneter.save.saveservice.
time=true"

The JMeter timestamp_format parameter can be used to specify logentry timestamps format. For eg:

-Jj neter. save. saveservi ce. ti nestanp_f ornat ="yyyy- Mt dd HH: nm ss”

As of April 2006, JMeter 2.1.1 must also be run with the following flag to ensure logfile uniformity:

-Dfile_format.testl og=2.0

This forces JMeter to use the old logformat which generates <sampleResult> element for all log entries. The newer format instead generates
<httpSample> elements for HTTP requests and <sampleResult> for JIDBC sampler entries - this is inconvenient from a automated log processing point of
view. Refer this Jmeter-user thread for more details

The above settings can also be defined as global properties in the jmeter.properties configuration file, or in the user.properties file.

The JMeter Log Format

The format of JMeter log entries generated when using the flags in the previous section is defined in the table below. (Editing note: 4 spaces are used to
denote one level of XML ‘indentation'.)

XML Element Explanation
/testResults Root element for XML test log

@ersi on Version of test results. Currently (JMeter 2.1.1), set to "1.1" irrespective of testlog format flag.

All log data is stored under an array of 'sampleResult' elements.
/ sanpl eResul t/. ..

. Timestamp - See Java method System.currentTimeMillis
@i meSt anp P 4 0

@lat aType Datatype - typically "text"

https://cwiki.apache.org/confluence/display/JMETER/JmeterMeter
http://mail-archives.apache.org/mod_mbox/jakarta-jmeter-user/200604.mbox/%3CE5D178BFB0356B48A48B8330B2903721ED5CA6@syd1exc04.CE.CORP%3E

Name set for the thread group, with affixed at the end " <iteration>-<thread_id>". For eg "Integration Tests
Thread Group 1-1"

@ hr eadNane

Label set for the sampler. For eg "Login to Custom URL using test account credentials"
@ abel

Time in milliseconds for request to complete. Eg "2515"
@ine

Response message. Eg "OK"

@ esponseMessage

Response code. Eg "200"

@ esponseCode

String indicating status of the request. Can be "true" or "false"

@uccess

HTTP Redirects are represented as an array of nested 'sampleResult' elements. Only 1 level of nesting occurs (i.

e. the nested subresults do not nest further).
/sampl eResul t/. ..

A string containing POST Data, Query Data and Cookie Data

| property
@n : XML attribute indicating whether that white space is significant. Set to "preserve"
space
Set to "samplerData"
@ane

Assertion information are stored in an array of assertionResult

/assertionResult/...

The failure message when the assertion fails

@ ai | ureMessage

Set to "true” or "false" to indicate error in assertion (stays "false" on assertion failure)

@rror

Set to "true” or "false" to indicate whether assertion failed or not

@ailure

Data returned in response

/ bi nary

Perl Based Method for Log Extraction

Here are some steps to import and process JMeter log data in Excel. Steps #3 and 4 are painstaking and can be automated by Excel macros - however,
this is beyond my abilities at the moment:

1. First, generate delimited file for import into Excel.

| use Perl to parse the XML logs and generate a delimited file for import into Excel. The heart of the Perl script is the regular expression below. Each line in
the JMeter logfile must be matched to this expression:

Regul ar expression extracts relevant fields fromthe log entry.
/timeStanmp="(\d+)". +?t hreadName="(.*?)". +?l abel =" (. +?)" tinme="(\d+?)". +?success="(.+?)"/;

Data in the regex variables is accessed for use in building suitably-delinmted |ine
ny $timestanp = $1; # unix tinmestanp

ny $threadname = $2; # thread | abel

ny $l abel = $3; # operation |abel

ny $time = $4; # operation time in milliseconds

ny $success = $5; # bool ean success indicator for this operation

The complexity of the regular expression is required to parse nested log entries that occur during HTTP redirects. A normal log entry line logs one HTTP
'sampler’ operation. For eg:

<sanpl eResult ... tine="156" ... />

However, when the opertion had a HTTP redirect (HTTP status code 302), JMeter records the redirects as nested <sanpl eResul t > elements — these
which still occur on the same line as the log entry: <sanpl eResult ... tinme="2750"> <sanpleResult ... tine="2468" ... />

<sanpl eResul t time="141" .../> <sanpleResult ... time="141" .../> </sanpl eResul t>

The outermost <sanpl eResul t > element has time = 2750 milliseconds. This is the sum of times of the nested redirect elements. We are only interested
in the data contained in the outermost element. Hence the regular expression uses the non-greedy pattern match operator (. *? or . +?) to ignore the
latter <sanpl eResul t > elements.

On the other hand, Excel 2002 can directly import JMeter XML format logs. However, it has problems with entries for HTTP 302 redirects. The nested log
entry example above will generate three rows in Excel, with the total time repeated thrice. i.e:

Logi n 2750
Logi n 2750
Logi n 2750

2. Convert Timestamps to Excel Format

Once the data is in Excel, | convert the timestamp column from Jmeter's Java timestamp format (base year 1970) to the Excel format (base year 1900 or
1904 depending on the Excel version and underlying OS) using this following formula. This formula is applied to the entire timestamp column.

For GMT time on Windows

=((x/ 1000) / 86400) +(DATEVALUE(" 1- 1- 1970") - DATEVALUE("1- 1-1900"))

For GMT time on Mac OS X

=((x/ 1000) / 86400) +(DATEVALUE(" 1- 1- 1970") - DATEVALUE("1- 1-1904"))

For local time on Windows (replace t with your current offset from GMT)

=(((x/1000) - (t *3600))/ 86400) +(DATEVALUE(" 1- 1- 1970") - DATEVALUE(" 1- 1- 1900"))

For local time on Mac OS X (replace t with your current offset from GMT)

=(((x/1000) - (t *3600))/ 86400) +(DATEVALUE(" 1- 1- 1970") - DATEVALUE(" 1- 1-1904"))

3. Now sort rows on the operation name (i.e. JMeter sampler name)
4. Generate suitable reports and graphs manually.

For instance, one can generate a graph of page load times v/s time for different operations (e.g.: login, add 1 line to the order, etc). A different series in the
graph is needed for each operation type used - this can be quite painstaking to add to a graph when there is a lot of data.

The graphs generated can be quite useful in visualizing performance of websites. See the graph below for an example of one such dummy website. The
JMeter test that generated the data imposed a steady "normal load" component, but also imposed two short-term, high volume "surge loads" spread 10
minutes apart. (This was done using a separate JMeter thread group).

DummyWebsitePerformance.JPG!

XSL script to extract Jmeter logs

(Peter Thomas) There are XSL scripts that | found that come along with the Jmeter distribution in the "extras" folder as "jmeter-results-report.xsl|" and
"jmeter-results-detail-report.xsl". However the HTML rendered is very complex, doesn't work well in Firefox and is bit difficult to grab into Excel.

Here's a simple script that just converts the Jmeter XML into an HTML table and does nothing else. You can do a "select all* on the HTML, and paste into
Excel and it works smoothly.

The advantage of the XSL approach is the handling of the nested "sampleResult" elements if they are encountered. In the script below they are ignored.
You can uncomment the XML comment that appears toward the end of the script and pick up the nested "sampleResult"s if you want but they really get in
the way. The primary level "sampleResult" elements contain the sum of nested "sampleResult" times so this should be OK.

<xsl : styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Transfornt versi on="1.0">
<xsl :out put method="htm " indent="yes" encodi ng="US-ASClI | " doctype-public="-//WC/ /DID HTM. 4.01 Transitional
/1EN" [>

<xsl:tenplate match="/">
<htm >
<body>
<xsl : appl y-tenpl ates/ >
</ body>
</htnm >
</ xsl:tenpl at e>

<xsl:tenplate match="test Resul ts">
<tabl e border="1">
<tr>
<t h>ti neSt anp</th>
<t h>dat aType</t h>
<t h>t hr eadNanme</t h>
<t h>| abel </t h>
<th>tine</th>
<t h>r esponseMessage</t h>
<t h>r esponseCode</t h>
<t h>success</th>
</tr>
<xsl : appl y-tenpl ates/ >
</t abl e>
</ xsl:tenpl at e>

<xsl:tenpl ate match="sanpl eResul t">
<tr>
<t d><xsl : val ue-of select="@i neStanp"/></td>
<t d><xsl : val ue- of sel ect =" @lat aType"/></td>
<t d><xsl : val ue- of sel ect="@ hr eadNane"/ ></t d>
<t d><xsl : val ue- of sel ect="@ abel "/ ></td>
<t d><xsl : val ue-of select="@ime"/></td>
<t d><xsl : val ue- of sel ect =" @ esponseMessage"/ ></t d>
<t d><xsl : val ue- of sel ect =" @ esponseCode"/></td>
<t d><xsl : val ue- of sel ect =" @uccess"/></td>
</tr>
<l --<xsl:apply-tenpl ates/>-->
</ xsl :tenpl at e>

</ xsl : styl esheet >

It should be easy to apply this XSL stylesheet on your Jmeter file. | use a small Java program. | think you can add an xsl stylesheet processing instruction
at the start of your XML file and open it in IE or Firefox directly. Someone can post on how to exactly do this.

Once within Excel, pivot tables are the way to go.

5. You can also use the following package that mixes Excel Macro, java transformation and xsl transformation of the .jtl files. It automatically generates
Excel graphs using a Macro. The package is available here : scripts_jmeter.zip

Summarizing Huge Datasets

Shell Script to Aggregate Per Minute

#

1o ~ 300

—thruputitprn) —— response {ms)
12':"] B l‘|- """""""""" L 280
E 1000 _
£ L " Lw-mJﬂJM-.Uw . r200 g
T 800 -4y Yy bl
a - 150 £
B 600 ff--------fomrmm e e g
2 | 100 B
I L B S
200 50
0 I B B T B R R | 0
o o (=] o (=] o o (=] = o (=] o (=)
Mo O M T O M F O N 7 O
@& 8 8 & &2 4 4 M /M M MoM
— — (3] 4 (] ™~ r4 (4] ™~ ™~ ™~ 4 (4]
Time

As a software tester, sometimes you are called upon to performance test a web service (see BuildWSTest) and present results in a nice chart to impress
your manager. JMeter is commonly used to thrash the server and produce insane amounts of throughput data. If you're running 1000 tpm this can be
rather a lot of data (180,000 transactions for a 3 hour test run). Even using the Simple Data Writer, this is beyond the capability of JIMeter's inbuilt
graphics package and is too much to import to Excel.

My solution is to group throughput per minute and average transaction time for each minute. Attached below is a Bash script for processing a JTL log file
from JMeter. It reduces a 3-hour test run to 180 data points which is much easier to represent with a chart program such as Excel.
The script uses a few neat awk tricks, such as:

Rounding Java timestamps to nearest minute

Collect timestamps grouped by minute

Convert Java timestamp to YYYY-MM-dd etc.

Print Throughput for a minute increment

Print Average response time for a minute increment

Do all of the above in an efficient single pass through awk (this was the hardest bit!)

Script: jtimin.sh.txt

An example session, using j t |1 m n. sh to process a JTL file. The file produced, quer yBal ance. j t| . QUT (tab-delimited), can now be used to produce
throughput graph. Response times can also be included on the secondary axis, as in the diagram above. These graphs were very good at showing when
the integration layer was slow to respond and when throughput varied from the original JMeter plan.

$ jtimn.sh
Usage: jtlmn.sh <fil enane>
Summarizes JMeter JTL output into 1-m nute bl ocks

$ jtlmn.sh queryBal ance.jtl
Processi ng queryBal ance. jtl

$1s g*
queryBal ance.jtl queryBal ance.jtl.QUT

$ head queryBal ance.jtl.QUT
/cljmeter/performance/ Myserver/out put/queryBal ance. jtl

uni xtine date tinme thruput (tpm response(ns)
1160354940 2006. Cct . 09 13:49 65 0

1160355000 2006. Cct . 09 13:50 O 0

1160355060 2006. Cct . 09 13:51 0 0

1160355120 2006. Cct . 09 13:52 56 0

1160355180 2006. Cct . 09 13:53 98 108
1160355240 2006. Cct . 09 13:54 84 125
1160355300 2006. Cct . 09 13:55 0 0
1160355360 2006. Cct . 09 13:56 0 0

Script: jtimin.sh.txt

NB, here's a script to convert JMeter's Java timestamps: Script: utime2ymd.txt

Java Class to Quickly Summarize JMeter Results

| used the JMeter Ant task, http://www.programmerplanet.org/pages/projects/jmeter-ant-task.php, to produce very large output files. | wrote up this Java
class to Summarize this information. | hope you find this useful. - Andy G.

Java Class: JMeterSummary.java

https://cwiki.apache.org/confluence/display/JMETER/UserManual+BuildWSTest
https://cwiki.apache.org/confluence/download/attachments/119548875/jtlmin.sh.txt?version=1&modificationDate=1561045167000&api=v2
https://cwiki.apache.org/confluence/download/attachments/119548875/jtlmin.sh.txt?version=1&modificationDate=1561045167000&api=v2
https://cwiki.apache.org/confluence/download/attachments/119548875/utime2ymd.txt?version=1&modificationDate=1561045167000&api=v2
http://www.programmerplanet.org/pages/projects/jmeter-ant-task.php
https://cwiki.apache.org/confluence/download/attachments/119548875/JMeterSummary.java?version=1&modificationDate=1561045167000&api=v2

Sample Ouput:

Al Uls:

cnt: 333, avg t: 535 ns, max t: 30755 ms, min t: 10 nms, result codes: {200=291, 302=42}, failures: 0, cnt by
tine: [0.0s - 0.5s =312, 0.5s - 1.0 s =16, 30.5s - 31.0 s = 5]

avg conn: 17 ms, nmax conn: 120 ns, min conn: O ns, elapsed seconds: 71 s, cnt per second: 5

URL: /
cnt: 27, avg t: 44 nms, max t: 90 ms, min t: 20 s, result codes: {200=27}, failures: 0, cnt by time: [0.0 s -
0.5 s = 27]

URL: /hone. htm
cnt: 30, avg t: 173 nms, max t: 581 nms, min t: 70 ms, result codes: {200=30}, failures: O, cnt by time: [0.0 s -
0.5s =27, 0.5s - 1.0 s = 3]

URL: /news/
cnt: 9, avg t: 93 ns, max t: 120 ms, mn t: 70 ms, result codes: {200=9}, failures: 0, cnt by time: [0.0 s -
0.5 s = 9]

URL: /signout.jsp
cnt: 21, avg t: 30 ns, max t: 60 ms, mn t: 20 ns, result codes: {302=21}, failures: 0, cnt by time: [0.0 s -
0.5 s = 21]

cnt number of requests

avg t average time per request

max t longest request

min t shortest request

result codes http result code and number of times received

failures number of failures

cnt by time a break down of how many requests returned in the specified time range
avg conn average time doing connection overhead (time ms - latency ms = conn ms)
max conn max connection overhead

min conn min connection overhead

elapsed seconds | total elapsed time of test (last time stamp - first time stamp)

cnt per second throughput (number of requests / elapsed seconds)
Based on this sort of input:

<?xm version="1.0" encodi ng="UTF-8"?>

<testResults version="1.2">

<httpSanple t="511" [t="461" ts="1184177284608" s="true" |b="http://ww. website.con hone. htm " rc="200" rm="X"
tn="Thread Group 1-1" dt="text"/>

<httpSanpl e t="581" |t="481" ts="1184177284718" s="true" |b="http://ww. website.conl homre. htm " rc="200" rnm" K"
tn="Thread Group 1-1" dt="text"/>

Postgres Script to Quickly Aggregate a CSV-format JTL

If you use CSV format logs, this method of summarizing one or more CSV files orders of magnitude faster than importing it into the Aggregate Report
Listener. It requires PostgreSQL. Usage:

® jtlsummary.sh jtl_csv_result_files...

jtlsummary.sh

Extracting JTL files to CSV with Python (JMeter 2.3.x)

https://cwiki.apache.org/confluence/download/attachments/119548875/jtlsummary.sh?version=1&modificationDate=1561045165000&api=v2

This script does two things. First it filters the JTL file for a regular expression. Then it strips them and outputs a CSV file. This also includes the conversion
of the timestamp to a readable format.

The script only works with JTL files from JMeter 2.3.x (JTL version 2.1). Please see http://jakarta.apache.org/jmeter/usermanual/listeners.html#xmlformat2.
1 for details.

Usage is:

® program.py <JTL input file> <CSV output file> "<regular expression>"

#! /[usr/ bi n/ pyt hon
""" Description : Split JTL file into a conma delimited CVS by : Oiver Erlewein (c)2008 Date :
04.02. 2008 Lang : Python 2.4+

JMeter JTL field contents:

Attribute & Content by Bytes de Data encoding dt Data type ec Error count (O or 1, unless nmultiple
sanpl es are aggregated) hn Hostnane where the sanple was generated I b Label It Latency = tinme to initial
response (mlliseconds) - not all sanplers support this na Nunber of active threads for all thread
groups ng Number of active threads in this group rc Response Code (e.g. 200) rm Response Message (e.g.
OK) s Success flag (true/false) sc Sanple count (1, unless nultiple sanples are aggregated) t El apsed
time (mlliseconds) tn Thread Nanme ts tineStanp (milliseconds since m dnight Jan 1, 1970 UrC) """

i mport sys
inport re
inport datetine
import tine

startTine = tinme.tine()

cnt =0
cnt2 =0
failCnt =0

reConmpile = re.conmpile("\s([Ms]*?2)=\"(.*?2)\"")

delimterCharacterQut = ",

def writeCSVLine(line):

x = reConpile.findall(line)
a =dict((row0], rowf1]) for rowin x)
try:
a['ts'] = str(int(int(a['ts'])/1000))
X = str(datetine.datetine.fronti mestanp(float(a['ts'])))[0:19]
b =a['ts'] +",\"" + x +"\"," +a['t'] +"," +a['lt'] +",\"" +a"'s'] +"\"\"" +a
["Ib'] +"\"," +a['rc'] +",\"" +a['r,m] + "\" \"" + a["tn'] + "\",\"" + a['dt'] + "\"," + a['by'] +
"\ e
except:
return -1
o.wite(b)
return 1

print "Splitting JTL file"

try:
runArgv = sys.argv # Save the command |ine
jtlInfile = str(sys.argv[1l]) # Nane of JTL input file
cvsQutfile = str(sys.argv[2]) # Name of CVS output file
reFilter = str(sys.argv[3]) # Filter the labels (Ib) for the filter
except:
print "Error: Input format: <input file> <output file> <Filter by regul ar expression>"
raise
try:
f = open(jtlinfile, "r")
o = open(cvsQutfile, "w")
except:
raise
print "Filtering on regular expression : " + reFilter cnpFilter = re.conpile(reFilter)

for linein f:

try:
if cnpFilter.search(line):

http://jakarta.apache.org/jmeter/usermanual/listeners.html#xmlformat2.1
http://jakarta.apache.org/jmeter/usermanual/listeners.html#xmlformat2.1

returnVal = writeCSVLi ne(line)
if returnval < 0O:
failCnt += 1

el se:
cnt2 += 1
except:
print "Error inline: ', cnt, line
rai se
cnt += 1
endTinme = tinme.tinme()
print "Tine taken : ", str(endTine-startTine)
print "Lines processed : ", cnt
print "Lines that passed the filter : ", cnt2
print "Lines skipped (error?) : ", failCnt
f.close()
o.cl ose()

Generating charts with Perl

(Christoph Meissner) When it comes to exploit jmeters logfiles generated by many clients over a long testing period one might run into time consuming
efforts putting all data together into charts. Present charts of jmeter relate response time to throughput. If you are working in larger enterprise environments
it might also be interesting to see the relationship to the number of users who caused the requests. This applies even more when your company must
make sure that it's applications can supply data to a certain number of employees over all day. Also it is very interesting to get a feeling in which range
response times deviate as soon as your applications get stressed.

To reduce effort I'd like to present one of my Perl scripts here. It parses any number of jmeter logs and aggregates the data into several different charts
(examples follow below):

chart type comment

stacked chart abs | cusps for aggregated respone times per measure point

stacked chartrel | cusps for aggregated respone times per measure point expressed in percentages
entire user aggregated response times opposed to number of active threads

entire throughput = aggregated response times opposed to throughput

user aggregated response times for this measure point opposed to number of active threads

throughput aggregated response times for this measure point opposed to number of active threads
Here are exemplary charts showing a test against an address validation tool stressed with 25 active threads (a very small test %=):

Stacked chart showing cusps of response times

Measure points are shown at the x-axis.

Response Time

300

000

@< 10000 mzec
-8 5000 msec

B 3000 msec

2500

2000

1500

Requests

pRe

S0

il

1
il

C224
J

E=3
Login—:l

Stacked chart showing response times in %

gif

ElanEinstieg-:H

ElanShuGewerbe 4

ElanShupdressService o

ElanShuGewerbe_Host_Call

Partner

Response Time X

1 — |
8= 10000 msec
-8 5000 msec
B 3000 msec
G0 +—
B —
g1
“
-
“
1)
3
o
1)
o
20 +— —
T T

Login+
csz
s

gif 4

ElanEinstieg
ElanShuGewerbe 4
ElanshupdressService o
Partner

ElanShuGewerbe_Host_Call

Chart opposing total response times to total threads

x-axis shows the timestamps of the test, left y-axis holds response times, right y-axis holds number of active threads (it is also possible to display a 1
standard deviation line for the response times (see script below)).

Response Time total

25

F a0

F15

SpEA.Y)} anToe
k=3

-
L

/

/

1200

pRe

00

b= =
p=1 =
] =+

JasM auT] asuodsay

200

W H

W H

N

o0

- O0:

o0

=00

W H

- O0:

o0

[00:

o0

W H

W H

W H

[O0*

o0

00

o0

oo

W H

=00

o0

[O0:

o0

oo

W H

W H

o0

o0

[O0*

g

6zt

azt

£Z8

9z:

Gz:

P

£z:

Zik

Tz

og:

aT:

aT

LT:

T

&7

i

en

2T

TI:

[

il

08

03

Qs

So:

s

08

208

Tos

LLE

6T

6T

&T

6T

6T

6T

a7

6T

15

6T

15

6T

6T

6T

6T

&T

6T

&7

6T

6T

6T

a7

6T

15

6T

&7

6T

6T

6T

6T

&T

—uzEers

Chart opposing total response times to total throughput

x-axis shows the timestamps of the test, left y-axis holds response times, right y-axis holds throughput (it is also possible to display a 1 standard deviation

line for the response times (see script below))

Response Time total

SO0

I OG0

[~ 300

utH/sa3hq gndydnoay

20000

3

L0606

E=3

Syl H

W H

[O0:

o0

F oo

W H

o0

[O0*

W H

L

o0

[O0:

W H

W H

o0

o0

oo

o0

[O0:

W H

oo

o0

o0

Syl H

W H

[O0:

o0

F oo

W H

o0

[O0*

1200

pRe

00

b=
p=1
]

JasM auT] asuodsay

=
=
=+

200

E=3

OERET

62:6T

6T

LZ2i6T

S26T

GZi6T

PZiaT

26T

ZziaT

TZ6T

0Z:6T

[

26T

LTi6T

96T

GTi6T

PT:6T

£Ti6T

ZT6T

TE6T

oT67

a0 6T

20:6T

LORET

06T

COET

POIET

06T

Z0:6T

TO:6T

00t ET

m— hroughput

Chart opposing response times of a single measure point to active threads

Response Time ElanShufAdressSerwvice

25.000

20000

15 . 000

SpEA.Y)} anToe

L0000

F 5 .000

0000

7

/
/

/

F o0 0EiaT

[O0i 62 6T

F o0 gziaT

FoosL2iaT

F o0 9z:6T

F o0 GZiaT

F o0 pZiaT

Fo0:EZiaT

Fo0:ZziaT

F o0 TZiaT

o0t OZR 6T

o0 aTiaT

F o0 8T 6T

FO0:LTIaT

F o097 6T

FO0:GTiaT

o0 pTiaT

FO0ETIaT

o0 ZTiaT

o0 TTiaT

Moo 0T aT

o0 a0iaT

Moo 20iaT

o0 L0:6T

MO0 90:6T

o0 Go:aT

o0 PO aT

o0 E0iaT

o0 Z0:6T

000 GO

FT000 000

FO000 G0

2000, (00

20000, Qi
3000, G0

JasM auT] asuodsay

L0000 Qo0

TO00 000

0000

—lSErE

Chart opposing response times of a single measure point to throughput

Response Time ElanShufAdressSerwvice

40000000 35000000
FH000 000 /\'
F 50000000
30000000 /\ /\
W \/ \ /j/ 25000000
25000000 v
\/ F 20000000
(%]
o
W
L 20000 000 -
o =
T o
b= =
- =
P b 15000000 3
W =
= £
=] -
& 15000000
4]
[
F 10000000
10000 000
F 5000 .000
000,000
0.000 T 0000
k=3 o k=3 k=3 k=3 k=3 E=3 k=3 k=3 k=3 k=3 =3 k=3 E=3 k=3 E=3 k=3 o k=3 k=3 k=3 k=3 E=3 k=3 k=3 k=3 k=3 =3 k=3
£ 2 %2 % ¥ ¢ 2 2 % % 2 2 08 2 22 g 92 2z ¢ 2 8z 2 2 2 2 =
o o b= uw o - o [=4) L= - ol ol s uwr w - oo L= k=3 - od o = o =] - oo L= k=3
g £ 2 % £ ¢ 2 2 ¥ T oo ow o¢o¥o oo ¢ o§ O o9 o9 o409 o o o & @
(= (=11 (= (= (=1 (= o (= (=31 (= (= 0y (= (=1 (= (=31 (= (=11 (= (= (=1 (= (=1 (= (=31 (= (= 0y (=
- -

| m— hroughput

Configure jmeters testplan
To make jmeter to generate appropriate log files you will have to configure your testplan properly.

One task will be to name your requests (the pipettes) in a way that allows the script to cumulate response times, active threads and throughput together
into measure points. Also you will have to tell jmeter to log particular data.

For both requirements look at the example screenshot, please:

B

Datei Bearbeiten Start Optionen Hilfe

9 L& ELAN_SHU_Gewerke —
@ rLowt
Statiztical SAgoregst
Wisw Results Tree
Aggregste Report
i8¢ User Defined varis

4k HTTP Autharization erende Datei auswihlen, |9ewerbeILDw1 _wl.41 .jmx_AggRepon.th| | Datei laden... | LogDisplay Onhy: [_| Errors [[] Successes Configure 2
Average I nedian | aowiine | Min I W] Errar % [Throughput | KBisat |
1] 0 1] 0/92233720368647 . 0,00% ,0/hour 1]

Sample Result Save Configuration

@ *A)' Login [v] Save s XML [Z] Save Field Names (CSY) [Z] Save Assertion Failure Message
[J isessionid [_] Save Response Headers ({ML) [_| Save Request Headers (XML) || Save Assertion Results (XML)
stepld :
pe_ster [v] Save Response Code [v] Save Data Type [l Save Encoding
Response & [
Respanse & | 4 [¥] Save Label [v] Save Latency [v] Save Response Message
Duration As{ | [_] Save Response Data (¥ML) [l Save Sampler Data (XML) [v] Save Sub Results (XML}
¢ ® ?i“c [Save Success [Save Thread Name [Save Elapsed Time
C55
";o css [v| Save Time Stamp |_] Save URL [v| Save lyte count
‘A [_] Save Response Filename [v] Save Active Thread Counts [_] Save Sample and Error Counts
,5: I [_] Save Hostname
J5
f’ Jz :
Ao ¢ Dane
» i

. insert an 'Aggregate Report' Listener to your testplan (top level).

. enter a filename where to save the results

. invoke 'Configure' and check the boxes as shown.

. Change the names of your requests. For instance in my exemplified testplan all requests for images were named as 'GIF', all requests for java
scripts were named as 'JS'. Special points of interest also get their appropriate name (eg. 'Login’, ‘Address Search’, ...). If you don't like particular
requests to be accumulated then name them starting with garbage (eg. garbage_gif, garbage_js, ...) This step is necessary because the script
collects data into labels of the same name. This way you make sure that you get a chart that will show the response times for all images or all
'Login’ or all 'Address Searches' (except those that start with garbage)

A WN P

The script
The jmetergraph.pl requires Chart 2.4.1 to be installed (http://search.cpan.org/~chartgrp/Chart-2.4.1/).

Updated the script as jmetergraphhtml.pl to include Mhardy's change below and to create an index.html page to view the graphs. Leaving the above in
case | screwed it up. (aaronforster)

You can call the script in this way:

perl jnetergraph.pl [-alllb] [-stddev] [-range] <jtl file 1> [... <jtl file n>]

Normally jmetergraph.pl will not draw a stacked chart for requests that make less than 1% of entire number of requests. However, if you invoke
jmetergraph.pl with -alllb then you will also see a stack for these requests (except request labels starting with garbage).

If you pass -stddev the graphs will show the normal standard deviation of the response times, too.

https://cwiki.apache.org/confluence/download/attachments/119548875/jmetergraph.pl?version=1&modificationDate=1561045166000&api=v2
http://search.cpan.org/~chartgrp/Chart-2.4.1/
https://cwiki.apache.org/confluence/download/attachments/119548875/jmetergraphhtml.pl?version=1&modificationDate=1561045165000&api=v2

Response Time total

25

F a0

sp

F15

BAIY]} BATIOE
k=3

-
L

E=3

/

/

F o0 0EiaT

F o0 62iaT

o0 ez 6T

o0t iziaT

Fo0:9zi6T

Fo0iGziaT

FO0: PEI AT

Fo0:EZiaT

o0 ZEiaT

o0 TEiaT

o002 6T

Fo0iaTiaT

Fo0:aTiaT

FO0:LTIaT

FO0:9TiaT

FO0fGTET

o0 PTiaT

FO0rETRaT

o0 ZTiaT

FO0:TT6T

FO0:0TiaT

[O0F B0 6T

o0 20:aT

FO0:L0S6T

MO0 90:6T

o0 G0 aT

o0 pOIaT

F o0 06T

o0 Z0:6T

MO0 ToiaT

[O0r 00 6T

B0

S0

4000

JAEH

b=
p=1
=
@

2000

aWT] asuodsay

pRe

E=3

I users

If you pass -range then a bar chart will be generated showing the average range of the reponse times.

Response Time total

3000 25
2500
k2o
2000
15
o
o
W [}
L 500]
o o
T (5
=] £
- =
[t} o
2 2
=] Fio 3
-9 o
7] L]
4]
o
1000
ks
500 f/
o 0

1900 100
1901 100
1902 100
1903 100
1904 100
1905 100
1906 100
19207 100
1908 100
1909100 -
1910 200
19:11 200
1912 100
19015000
19:14 100
19015000
1916 100
19317 100
1915 100
19:19 100
1920 100
1921 100
1922 100
19123 100
1924 100+
1925 100
1926100
1927 100
1925100
19:29 100
1930 100

=
@
i
]
1

(Not sure exactly where to put this, please forgive me, but this script is great with one minor minor bug. What a shame to have that ruin people's usage of
it. Here's the patch that worked for me:

[mhardy@tkdevvm(192.168.146.130) util]$ diff jmetergraph.pl ~/mike/Desktop/jmetergraph.pl 313,314d312 < $glabels{'entire’} = %entire; <

...without that the "entire" .pngs don't contain data, Cheers, Mike)

JMeter Plugin for Hudson

The Hudson continuous integration server has a 'Performance’ plugin that can execute and report on JMeter and JUnit tests, and generate charts on
performance and robustness.

http://hudson-ci.org/
http://wiki.hudson-ci.org/display/HUDSON/Performance+Plugin

	LogAnalysis

