
ExposedFaceting
Exposed faceting
Experimental faceting contrib, available as .SOLR-2412

Optional hierarchical faceting
Multiple paths per document
Query-time analysis of the facet-field; no special requirements for indexing besides retaining separator characters in the terms used for
faceting
Low memory overhead for hierarchical faceting structure: Typically 1 byte or less per unique path
Recursive counting of facet values at all levels of the output

Optional custom sorting of facet values
Total tags/facet, total matching tags/facet counting
Startup speed and memory footprint is about the same as equivalent Solr faceting, except with many fields where memory footprint is markedly
lower
Facet search response time is the same as or lower than the Solr facet equivalent; more fields means comparatively better performance for
exposed faceting
Grouped facet structure, making it possible to facet on thousands of fields (see below)
Limited in scope (not a good thing here)

Full-index structure (no segment based faceting)
String values only: No special handling of numbers, dates etc.
Single-core only: No support for distributed search

The Exposed core is a Lucene module and the Solr contrib is only a wrapper; full functionality is provided both with and without Solr.

Facet structure

The faceting structure is an index-wide list of references to term ordinals. A list of pointers from document IDs to reference sublists is maintained. Ideally,
the memory requirement for this setup is . In reality 3-4 times #documents*log2(#references) + #references*log2(#unique_values) bit
that is needed due to temporary building overhead and counting structures.

Multiple fields are handled by offsetting the ordinals of their terms by the sum of the preceding term ordinals. The downside is that a new facet structure
must be calculated for any new combination of wanted fields. The upside is that there is practically no extra memory or performance cost of using multiple
fields instead of a single one. This has been verified experimentally by faceting on .9000 fields in 10 million documents

Custom sorting of facet values adds a list of size to the structure. This can have considerable impact #unique_values*log2(#unique_values) bit
on startup time (rule of thumb: It is 5 times slower) and has practically no impact on search time. When running as a Lucene module, it is possible to avoid
memory overhead and increase speed by sorting by ICUCollatorKeys (very experimental).

Hierarchical faceting adds a list of size to the structure. This has light impact on startup time (rule #unique_values*(2*log2(maximum_depth)) bit
of thumb: Less than 2 times slower) and a hierarchical faceted search is only a little slower than a non-hierarchical one. See Fast, light, n-level hierarchical

 for details.faceting

When exposed faceting might be considered

If hierarchical faceting in Solr is needed
If both the number of documents and the number of facet fields are high (50M documents and 30 facet fields for example) and memory-
requirements & CPU-load must be low

In many cases, multi-path hierarchical faceting can be simulated in Solr at the cost of memory and/or speed. In some cases it is possible to mitigate the
memory & CPU-toll of many-documents-many-fields faceting in Solr by collapsing fields (less memory & CPU), using segment based faceting (less
memory) or (less memory, possibly less CPU).DocValues

How to make it work

SOLR-2412 provides instructions on how to build the contrib.

TODO Add samples for requests and responses.

https://issues.apache.org/jira/browse/SOLR-2412
http://sbdevel.wordpress.com/2013/03/20/over-9000-facet-fields/
http://sbdevel.wordpress.com/2010/10/05/fast-hierarchical-faceting/
http://sbdevel.wordpress.com/2010/10/05/fast-hierarchical-faceting/
https://cwiki.apache.org/confluence/display/SOLR/DocValues
https://issues.apache.org/jira/browse/SOLR-2412

	ExposedFaceting

