
FieldCollapsing
<!> (!) Solr4.0 Solr3.3

Result Grouping / Field Collapsing
Result Grouping / Field Collapsing
Introduction
Quick Start
Request Parameters
Known Limitations

Introduction
Field Collapsing and Result Grouping are different ways to think about the same Solr feature.

Field Collapsing collapses a group of results with the same field value down to a single (or fixed number) of entries. For example, most search engines
such as Google collapse on site so only one or two entries are shown, along with a link to click to see more results from that site. Field collapsing can also
be used to suppress duplicate documents.

Result Grouping groups documents with a common field value into groups, returning the top documents per group, and the top groups based on what
documents are in the groups. One example is a search at Best Buy for a common term such as DVD, that shows the top 3 results for each category ("TVs
& Video","Movies","Computers", etc)

Quick Start
If you haven't already, get a recent nightly build of] or , start the example server and index the example data as shown in the [solr tutorial Solr3.3 http://lucen

.e.apache.org/solr/tutorial.html

Now send a query request to solr and turn on result grouping. We'll first try grouping on the manufacturer name (the manu_exact field). You can
currently only group on single-valued fields!

...&q=solr+memory&group=true&group.field=manu_exact

And the grouped response is returned:

https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/Solr3.3
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/Solr3.3
http://lucene.apache.org/solr/tutorial.html
http://lucene.apache.org/solr/tutorial.html
http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name&q=solr+memory&group=true&group.field=manu_exact

[...]
 "grouped":{
 "manu_exact":{
 "matches":6,
 "groups":[{
 "groupValue":"Apache Software Foundation",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"SOLR1000",
 "name":"Solr, the Enterprise Search Server"}]
 }},
 {
 "groupValue":"Corsair Microsystems Inc.",
 "doclist":{"numFound":2,"start":0,"docs":[
 {
 "id":"VS1GB400C3",
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) System Memory -
Retail"}]
 }},
 {
 "groupValue":"A-DATA Technology Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"VDBDB1A16",
 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) System Memory -
OEM"}]
 }},
 {
 "groupValue":"Canon Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"0579B002",
 "name":"Canon PIXMA MP500 All-In-One Photo Printer"}]
 }},
 {
 "groupValue":"ASUS Computer Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"EN7800GTX/2DHTV/256M",
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)"}]
 }}]}}

The response indicates that there are 6 total matches to our query. For each unique value of group.field (manufacturer names in this example) a docList
with the top scoring document is returned. The docList also gives the total number of matches in that group as "numFound". The groups themselves are
also sorted by the score of the top document within each group.

We can find the top documents that also match arbitrary queries with the command (much like). For example, we could use group.query facet.query
this to find the top 3 documents with in different price ranges:

[http://localhost:8983/solr/select?wt=json&indent=true&fl=name,price&q=memory&group=true&group.query=price:[0+TO+99.99]&group.query=price:
][100+TO+*]&group.limit=3

#
#

[...]
 "grouped":{
 "price:[0 TO 99.99]":{
 "matches":5,
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) System Memory -
Retail",
 "price":74.99}]
 }},
 "price:[100 TO *]":{
 "matches":5,
 "doclist":{"numFound":3,"start":0,"docs":[
 {
 "name":"Canon PIXMA MP500 All-In-One Photo Printer",
 "price":179.99},
 {
 "name":"CORSAIR XMS 2GB (2 x 1GB) 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) Dual Channel Kit
System Memory - Retail",
 "price":185.0},
 {
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)",
 "price":479.95}]
 }}
[...]

From the response above, we can see that 5 documents matched our base query of "memory". Of those, 1 had a price below $100, 3 had a price above
$100. This does not add up to 5 because one document was missing a price and hence did not match either group.query.

We can optionally use the results of a group command as the "main" result (i.e. a single flat document list that would normally be produced by a non-
grouped query request) by adding the parameter . Although this result format does not have as much information, it may be easier for group.main=true
existing solr clients to parse.

...&q=solr+memory&group=true&group.field=manu_exact&group.main=true

 "response":{"numFound":6,"start":0,"docs":[
 {
 "id":"SOLR1000",
 "name":"Solr, the Enterprise Search Server",
 "manu":"Apache Software Foundation"},
 {
 "id":"VS1GB400C3",
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) System Memory - Retail",
 "manu":"Corsair Microsystems Inc."},
 {
 "id":"VDBDB1A16",
 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) System Memory - OEM",
 "manu":"A-DATA Technology Inc."},
 {
 "id":"0579B002",
 "name":"Canon PIXMA MP500 All-In-One Photo Printer",
 "manu":"Canon Inc."},
 {
 "id":"EN7800GTX/2DHTV/256M",
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)",
 "manu":"ASUS Computer Inc."}]
 }

Request Parameters
param name p

ar
a
m
va
lue

description

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manu&q=solr+memory&group=true&group.field=manu_exact&group.main=true

group tr
ue
/fa
lse

if true, turn on result grouping

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="7e3890fe-
ace7-4f48-8f4c-
8d221d2c067b"><ac:plain-
text-body><![CDATA[

gr
ou
p.
fie
ld

[fieldname] Group based on the unique values of a field. The field must currently
be single-valued and must be either indexed, or be another field type
that has a value source and works in a function query - such as
[ExternalFileField

http://lucene.apache.org/solr/api/org
/apache/solr/schema
/ExternalFileField.html]. Note: for
Solr 3.x versions the field must by a
string like field such as [StrField] or
[TextField], otherwise a http status
400 is returned.

]]><
/ac:
plain-
text-
body>
</ac:
structu
red-
macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="f2886415-
2d68-4999-9d9b-
215efb31286a"><ac:plain-
text-body><![CDATA[

gr
ou
p.
fu
nc

[function query] Group based on the unique values of a function query. [Solr4.0]
This parameter only is supported on 4.0

]]></ac:plain-text-body></ac:
structured-macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="7836bcc3-
7a2d-4aa4-881b-
6685e8690789"><ac:plain-
text-body><![CDATA[

gr
ou
p.
qu
ery

[query] Return a single group of documents that also match the given query.]]></ac:plain-text-body></ac:
structured-macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="26ba566a-
1fa7-40e5-8fd8-
619fe36c1bbd"><ac:plain-
text-body><![CDATA[

ro
ws

[number] The number of groups to return. Defaults to 10.]]></ac:plain-text-body></ac:
structured-macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="8fb4b934-
953d-4958-aa42-
22a884fe0a0e"><ac:plain-
text-body><![CDATA[

st
art

[number] The offset into the list of groups.]]></ac:plain-text-body></ac:
structured-macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="2901a182-
eef0-4158-a5c2-
8af1167e3a42"><ac:plain-
text-body><![CDATA[

gr
ou
p.
li
mit

[number] The number of results (documents) to return for each group. Defaults
to 1.

]]></ac:plain-text-body></ac:
structured-macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="3c086348-
66e9-4442-95c9-
efee2f380d04"><ac:plain-
text-body><![CDATA[

gr
ou
p.
off
set

[number] The offset into the document list of each group.]]></ac:plain-text-body></ac:
structured-macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="0d05412a-
d1c4-4f6f-9bf9-
eb140d541410"><ac:plain-
text-body><![CDATA[

so
rt

[sortspec] How to sort the groups relative to each other. For example, sort=po
 will cause the groups to be sorted according to the pularity desc

highest popularity doc in each group. Defaults to "score desc".

]]></ac:plain-text-body></ac:
structured-macro>

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="f2627ae2-
1be2-4fd0-bde8-
65624f02817a"><ac:plain-
text-body><![CDATA[

gr
ou
p.
so
rt

[sortspec] How to sort documents within a single group. Defaults to the same
value as the parameter.sort

]]></ac:plain-text-body></ac:
structured-macro>

group.format gr
ou
pe
d
/si
m
ple

if simple, the grouped documents are presented in a single flat
list. The start and rows parameters refer to numbers of
documents instead of numbers of groups.

group.main tr
ue
/fa
lse

If true, the result of the last field grouping command is used as
the main result list in the response, using group.format=simple

group.ngroups tr
ue
/fa
lse

If true, includes the number of groups that have matched the

query. Default is false. Solr4.1
 If this parameter is set to true on a sharded WARNING:

environment, all the documents that belong to the same group
have to be located in the same shard, otherwise the count will
be incorrect. If you are using , consider using SolrCloud
"custom hashing"

group.truncate tr
ue
/fa
lse

If true, facet counts are based on the most relevant document
of each group matching the query. Same applies for StatsCom

. Default is false. Supported from Solr 3.4 ponent Solr3.4
and up.

group.facet tr
ue
/fa
lse

Whether to compute grouped facets for the field facets
specified in parameters. Grouped facets are facet.field
computed based on the first specified group. Just like normal
field faceting, fields shouldn't be tokenized (otherwise counts
are computed for each token). Grouped faceting supports

single and multivalued fields. Default is false. Solr4.0
 If this parameter is set to true on a sharded WARNING:

environment, all the documents that belong to the same group
have to be located in the same shard, otherwise the count will
be incorrect. If you are using , consider using SolrCloud
"custom hashing"

https://cwiki.apache.org/confluence/display/SOLR/Solr4.1
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
https://cwiki.apache.org/confluence/display/SOLR/StatsComponent
https://cwiki.apache.org/confluence/display/SOLR/StatsComponent
https://cwiki.apache.org/confluence/display/SOLR/Solr3.4
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud

<ac:structured-macro ac:
name="unmigrated-wiki-
markup" ac:schema-version="
1" ac:macro-id="c584d873-
8e69-4067-8fcf-
fa79ce80cab7"><ac:plain-
text-body><![CDATA[

gr
ou
p.
ca
ch
e.
pe
rc
ent

[0-100] If > 0 enables grouping cache. Grouping is executed actual two
searches. This option caches the second search. A value of 0
disables grouping caching. Default is 0. Tests have shown that this
cache only improves search time with boolean queries, wildcard
queries and fuzzy queries. For simple queries like a term query or a
match all query this cache has a negative impact on performance

]]></ac:plain-text-body></ac:
structured-macro>

Notes:

Any number of group commands (group.field, group.func, group.query) may be specified in a single request.
Grouping is also supported for distributed searches from version and from version . Currently group.truncate and group.func Solr3.5 Solr4.0
are the only parameters that aren't supported for distributed searches.

Known Limitations
Support for grouping on a multi-valued field has not yet been implemented.
Further performance improvements are planned soon!

https://cwiki.apache.org/confluence/display/SOLR/Solr3.5
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0

	FieldCollapsing

