
HackingSolr

Hacking On Solr
Source Repository

Hacking With Solr
Solr Plugins
Customizing the War
web.xml Hacks

Customizing the Path Prefix Solr Intercepts
Hardcoding Solr Home

Embedding Solr

Hacking On Solr

Source Repository

The Solr website contains Information about the Lucene/Solr Source Code SVN Repository

There are currently two active development branches: "branches/branch_4x/" which all 4.x releases are derived from, and "trunk" which will be nightly
]. There are [for both.builds NightlyBuilds

Hacking With Solr

Solr Plugins

The first thing to know if you are interested in hacking and customizing Solr, is that you may not need to customize the source at all. Solr has a fairly
extensive number of that allow you to add custom functionality for a variety of purposes by developing against some simple APIs, and then Plugin Hooks
use your plugins by placing your jar in a special "lib" directory and referring to them by name in your configuration file.

Customizing the War

 Note that the ant build.xml files changed in Solr 3.4+, so these instructions would need to be altered for earlier versions.Solr3.4

If you want to know how to add a custom plugin and let the plugin replace the web.xml. Create your plugin similar the existing plugins in the contrib
directory. Create a build.xml file and add this to the build.xml file. You will need to change the build.xml to fit your needs but this build.xml is showing you
post-compile executions. What it is supposed to do is to replace the web.xml file with a custom-web.xml file and to place a compiled jar file from the plugin
in to the lib directory so that solr will include it in the solr.war file.

<?xml version="1.0"?>
 <project name="solr-customplugin" default="default">
 <property name="contrib.has.webapp" value="true" />
 <import file="../contrib-build.xml"/>
 <!-- Add the compiled jar to our war file -->
 <target name="add-to-war">
 <echo message="CUSTOM: Cleaning ${common-solr.dir}/lib/${fullnamever}.jar from the build " />
 <delete failonerror="false" file="${common-solr.dir}/lib/${fullnamever}.jar" />
 <echo message="CUSTOM: Copying ${common-solr.dir}/dist/${fullnamever}.jar to ${common-solr.dir}/lib" />
 <copy file="${common-solr.dir}/dist/${fullnamever}.jar" todir="${common-solr.dir}/lib"/>
 <delete failonerror="false" file="${common-solr.dir}/webapp/web/WEB-INF/web.xml" />
 <copy file="web-custom.xml" tofile="${common-solr.dir}/webapp/web/WEB-INF/web.xml"/>
 </target>
 <description>Build file for CUSTOM Search specifics</description>
 <!-- Add this whenever we want to build the example -->
 <target name="example" depends="common-solr.dist"/>
 </project>

Source : http://www.nickveenhof.be/blog/adding-custom-plugin-solr

web.xml Hacks

Some behavior of Solr can be modified just by changing the web.xml

Customizing the Path Prefix Solr Intercepts

http://lucene.apache.org/solr/version_control.html
https://cwiki.apache.org/confluence/display/SOLR/Solr5.0
https://cwiki.apache.org/confluence/display/SOLR/Solr5.0
https://cwiki.apache.org/confluence/display/SOLR/NightlyBuilds
https://cwiki.apache.org/confluence/display/SOLR/SolrPlugins
https://cwiki.apache.org/confluence/display/SOLR/Solr3.4
http://www.nickveenhof.be/blog/adding-custom-plugin-solr
http://svn.apache.org/viewvc/lucene/dev/trunk/solr/src/webapp/web/WEB-INF/web.xml?view=markup

If you are wiring Solr into a larger web application which controls the web context root, you will probably want to mount Solr under a path prefix (app.war
with /app/solr mounted into it, for example). You will need to specify a prefix init-param for the SolrDispatchFilter to do this. See the comments in the web.
xml for details.

Hardcoding Solr Home

The Solr Home can be hardcoded using JNDI

 <env-entry>
 <env-entry-name>solr/home</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>/put/your/solr/home/here</env-entry-value>
</env-entry>

Embedding Solr

In addition to using Solr as a web based application, the SolrJ API provides the ability to embedded the core Solr functionality into any Java application
using .EmbeddedSolrServer

https://cwiki.apache.org/confluence/display/SOLR/Solrj#Solrj-EmbeddedSolrServer

	HackingSolr

