
1.  

2.  
3.  
4.  

5.  

LotsOfCores
<!> Solr4.2

 NOT verified in ! This code has not been tested in  setups! SolrCloud SolrCloud

Overview
Configuration

old-style
new-style (core discovery)
From the original discussion

Further work
Issues for reference, the work is done

Overview
Considerable work has been done to move Solr towards being suitable for a large number of homogeneous cores where you require fast/frequent loading
/unloading of cores. This page describes the current state of the code as of Solr 4.4/5.0

The requirements of such a system are:

Very efficient loading of cores - Solr would be more efficient if it did not have to read and parse and create Schema,  objects for each SolrConfig
core every time the core has to be loaded (deferred).
Lazy load cores - Provide a way to START/STOP core.
Automatic loading of cores - Start a core automatically if a request comes in for a "stopped" core.
LRU Core Loading/Unloading - As there are a large number of cores, all the cores cannot be kept loaded always. There has to be an upper limit 
beyond which we need to unload a few cores.
Allowing a cores to be defined in a tree structure - If the number of cores is too high, all the cores' dataDirs cannot live in the same directory. 
There is an upper limit on the number of directories you can create in a directory w/o affecting performance. 

Configuration
We are going to "core discovery" mode for defining cores, see the page . The basic idea is that we're removing the <cores> and Solr.xml 4.4 and beyond
individual <core> tags from solr.xml, those tags will be unsupported as of 5.0. Instead, we'll start from <solr_home>, walk the directory tree looking for 
"core.properties" files which will define the location of each core. The parameters that define how this feature works will therefore be in different places 
depending on the mode.

There are two new attributes of a core (defaults in bold) and one new attribute for controlling how many transient cores are loaded at once.

transientCacheSize=[NNN]. If this limit is crossed, old cores marked 'transient="true"' are removed to make room on an LRU basis. Default size Int
.  cores with "transient=true" are put in this cache, so specifying this attribute without having any cores marked as eger.MAX_VALUE Only

"transient" has no effect except wasting a bit of memory.

Having this size be less than the number of cores marked 'transient="true"' AND 'loadOnStartup="true"'  work, but it's wasteful should
since a bunch of cores will be loaded on startup then immediately unloaded after the cache fills up.
NOTE: All transient core information is read at startup and the "list of cores" is unbounded.

old-style: this is an attribute of the <cores> tag
new-style: this is a child node of the <solr> tag, and looks like <int name="transientCacheSize">12</int> 

loadOnStartup=[" "|"false"]. Whether the core should be completely loaded upon startup.true

old-style: this is an attribute of each individual <core> tag
new-style: this is an entry in the "core.properties" file for each core. 

transient=["true"|" "]. Whether the core should be put in the LRU list of cores that may be unloaded. NOTE: When a core is unloaded, any false
outstanding operations (indexing or query) will be completed before the core is closed.

old-style: this is an attribute of each individual <core> tag
new-style: this is an entry in the "core.properties" file for each core. 

So the idea is that there's really no reason to tie in "lazy loading" with whether the core can be swapped out or not, so by splitting up the two options we 
give the user control over how these are handled. Use cases below:

loadOnStartup=  transient= : Current case. Spend all the time necessary to fully load the cores on startup.true false
loadOnStartup=  transient= : There are some cores you want loaded when the server first starts up, but that you'll allow to be swapped true true
out. It's wasteful to specify more cores like this than your transientCacheSize value.
loadOnStartup=  transient= : You'd specify this combination if starting Solr up quickly was more important than the inconvenience of false false
having to wait for cores to be loaded the first time a request was made. One could imagine starting Solr this way and having a background thread 
fire queries at each core to load it.
loadOnStartup=  transient= : There are a large number of cores in your system that are short-duration use. You want Solr to load them as false true
necessary, but unload them when the cache gets full on an LRU basis. 

https://cwiki.apache.org/confluence/display/SOLR/Solr4.2
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
#
https://cwiki.apache.org/confluence/display/SOLR/Solr.xml+4.4+and+beyond


old-style

The following configuration applies to the patch given in .SOLR-1293

<?xml version='1.0' encoding='UTF-8'?>
<solr persistent='true'>
  <cores adminPath="/admin/cores"
          transientCacheSize="4"
          adminHandler="org.apache.solr.handler.admin.LotsOfCoresAdminHandler"
          shareSchema="true">
    <core name="core0" instanceDir="/opt/solr" loadOnStartup="false" transient="true"/>
  </cores>
</solr>

new-style (core discovery)

<?xml version='1.0' encoding='UTF-8'?>
<solr persistent='true'>
  much omitted
  <int name="transientCacheSize">64</int>
</solr>

Then in an individual core.properties file

loadOnStartup=true|false
transient=true|false

From the original discussion

START/STOP commands. This is unnecessary with the transient cache definitions. Besides, the current functionality (admittedly confusing) is that 
UNLOAD implements STOP and CREATE implements START.
shareSchema - Ensures that only one instance of  is created in the Solr. Hasn't been rigorously tested in the new configuration, IndexSchema
and with named config sets the support will be automatic if supported.
shareConfig - deferred, not currently supported.
cleanOnUnload - Clean up (delete) the index when a core is unloaded. Not implemented yet, for my particular use-case it probably won't be. I 
can see the utility though. Doesn't seem very hard code-wise. 

Hmmm, haven't thought about the various status commands very deeply. There is an update to the 'status' command. Adding a parameter 'verbose=false' 
will return a minimal status report of the cores. The default status command uses Luke on the core's index to get very detailed information which is 
expensive if the status is queried very frequently.

Further work
Alias/Unalias commands are not fully tested currently. In particular, aliases are not persisted for cores.
We highly recommend that the 'alias' feature in Solr not be used due to the high synchronization overhead it brings.
Alternatively, we should work towards reducing the synchronization involved 

Issues for reference, the work is done
SOLR-1293 - Support for large number of cores and faster loading/unloading of cores. This issue has many child issues focusing on individual 
changes:

Deferred
SOLR-919 - Cache and reuse . We've investigated this and while it would certainly lead to improved responsiveness, SolrConfig
currently the use-cases do not require this to be implemented. It's not a trivial change, with potential to introduce too many bugs.

Fixed/Closed issues
SOLR-880 -  should have a STOP option and a lazy startup option (part of SOLR-1028)SolrCore
SOLR-920 - Cache and reuse IndexSchema
SOLR-921 -  must cache short name vs fully qualified nameSolrResourceLoader
SOLR-943 - Make it possible to specify dataDir in solr.xml
SOLR-1028 - Automatic core loading unloading for multicore
SOLR-1106 - Pluggable  (Action ) architecture that allows for custom handler access to  / CoreAdminHandler CoreContainer
request-response
SOLR-1108 - Remove synchronization in  constructorSolrCore

https://issues.apache.org/jira/browse/SOLR-1293
#
https://issues.apache.org/jira/browse/SOLR-1293
https://issues.apache.org/jira/browse/SOLR-919
#
https://issues.apache.org/jira/browse/SOLR-880
#
https://issues.apache.org/jira/browse/SOLR-920
#
https://issues.apache.org/jira/browse/SOLR-921
#
https://issues.apache.org/jira/browse/SOLR-943
https://issues.apache.org/jira/browse/SOLR-1028
https://issues.apache.org/jira/browse/SOLR-1106
#
#
https://issues.apache.org/jira/browse/SOLR-1108
#


SOLR-1306 - Support pluggable persistence/loading of solr.xml details. Wound up discovering cores instead
SOLR-1416 - Reduce contention in #getCore(). Closed, haven't seen evidence we need to do this.CoreContainer
SOLR-1530 - Open  lazilyIndexSearcher
SOLR-1531 - Provide an option to remove the data directory on core unload. Already done in [[https://issues.apache.org/jira
/browse/SOLR-2610|SOLR-2610]
SOLR-1533 - Partition data directories into multiple "bucket" directories. Will be handled by SOLR-1306.
SOLR-3980 - list not loaded (lazily loaded) cores for clients. See SOLR-4196
SOLR-4083 - Move to a directory-based configuration. Part of other JIRAs
SOLR-4196 - While it looks unrelated, "untangling solr.xml" turns out to contain, very probably, a huge amount of the actual 
work.
SOLR-4401 - Add stress test to JUnit tests
SOLR-4478 - Specify configuration sets. This is actually under development, but currently doesn't pertain to this issue. The 
reason it was originally included in this page was I was thinking of incorporating SOLR-919 in this JIRA so it's listed for 
reference. 

Other features which may be needed for such a system include:

Changes to SolrJ for new start/stop commands and better error codes/messages.

https://issues.apache.org/jira/browse/SOLR-1306
https://issues.apache.org/jira/browse/SOLR-1416
#
https://issues.apache.org/jira/browse/SOLR-1530
#
https://issues.apache.org/jira/browse/SOLR-1531
https://issues.apache.org/jira/browse/SOLR-1533
https://issues.apache.org/jira/browse/SOLR-3980
https://issues.apache.org/jira/browse/SOLR-4196
https://issues.apache.org/jira/browse/SOLR-4083
https://issues.apache.org/jira/browse/SOLR-4196
https://issues.apache.org/jira/browse/SOLR-4401
https://issues.apache.org/jira/browse/SOLR-4478

	LotsOfCores

