
MultitermQueryAnalysis
<!> (!) Solr3.6 Solr4.0

One of the surprises for most Solr users is that wildcards queries haven't gone through any analysis. Practically, this means that wildcard (and prefix and
range) queries are case sensitive, which is at odds with expectations. As of this , , and perhaps , this behavior is SOLR-2438 SOLR-2918 SOLR-2921
changed.

What's a multiterm you ask? Essentially it's any term that may "point to" more than one real term. For instance, run* could expand to runs, runner, running,
runt, etc. Likewise, a range query is really a "multiterm" query as well. Before Solr 3.6, these were completely unprocessed, the application layer usually
had to apply any transformations required, for instance lower-casing the input. Running these types of terms through a "normal" query analysis chain leads
to all sorts of behavior so was avoided.interesting

New analyzer chain
Defining the chain
Why is this "arguably expert"?

Auto-detection: A.K.A. "doing the right thing"
Legacy behavior
Current components that implement MultiTermAwareComponent

New analyzer chain

The file controls how fields are analyzed at index and query time. Now, you can optionally add a <analyzer type="multiterm"> analysis chain. schema.xml
Don't worry! If you don't, Solr tries to "do the right thing" (see below). This arguably an expert-level option, and in most cases the new default behavior

, so don't define your own "multiterm" analysis chain unless you really have a need. You can string together any of the available or custom should be fine
elements of a Solr analysis chain when defining this new chain.

Defining the chain

Just like there are two current analyzer chains, "index" and "query" (e.g.. <analyzer type="index">) there is now a third, optional analyzer <analyzer type="
multiterm">. Just put it in the the <fieldType> as you would "index" or "query" types.

Why is this "arguably expert"?

Well, the assumption is that 95% of the time, all queries really need is lowercasing and, perhaps, accent folding. Those cases and the common CharFilters
are already automatically applied, it seems likely that defining your own multiterm analysis chain will not be necessary. If this assumption is incorrect, feel
free to raise a JIRA! All the assumptions in the world aren't worth a few real-world tests.

If you define your own chain, be aware that Solr will throw an exception if the chain you've defined evaluates to more than one term. Odd choice of phrase
when it's called "multiterm", but it on multi-term queries, it does not multiple terms. So, for instance, if you define your own chain and put operates produce

 in it and then send camel-case terms with wildcards, Solr will throw an exception when it analyzes the query.WordDelimiterFilterFactory

And note that when defining your own multiterm analysis chain in the schema.xml file, none of the comments below about implementing MultiTermAwareCo
 apply. Any component you place in the multiterm analyzer will be used as-is.mponent

Auto-detection: A.K.A. "doing the right thing"

Solr tries to take the pain out of creating another analysis chain when the behavior is predictable. Solr does this by looking at what has been defined and
picking things out of that chain that "make sense". These are used to build the "multiterm" analyzer without anything needing to be specified. So you don't
have to do to get this capability.anything

During schema file analysis, if there is no <analyzer type="multiterm"> defined, Solr will construct it from the first of <analyzer type="query"> or <analyzer
type="index"> or <analyzer>, in that order. The new analyzer will consist of any component of the analysis chain that implements MultiTermAwareCompon

. This new analyzer is then applied to all multiterm terms. Internally to Solr, any component that implements are required to ent MultiTermAwareComponent
"do the right thing" to play nicely as part of the multiterm analysis chain.

Legacy behavior

If you require the old behavior, you can specify a multiterm analysis chain that consists of only a as part of your <fieldType> KeywordTokenizerFactory
definition like this:

<fieldType>
 <index and query analyzers here>
 <analyzer type="multiterm">
 <tokenizer class="solr.KeywordTokenizerFactory" />
 </analyzer>
</fieldType>

https://cwiki.apache.org/confluence/display/SOLR/Solr3.6
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://issues.apache.org/jira/browse/SOLR-2438
https://issues.apache.org/jira/browse/SOLR-2918
https://issues.apache.org/jira/browse/SOLR-2921
http://svn.apache.org/viewvc/lucene/dev/trunk/solr/example/solr/conf/schema.xml?view=markup
#
#
#
#
#
#
#
#

Current components that implement MultiTermAwareComponent

Here's a list as of 27-Nov-2011. You can always determine what the current list is by finding classes that implement (as it's MultiTermAwareComponent
currently named).

ASCIIFoldingFilterFactory
LowerCaseFilterFactory
LowerCaseTokenizerFactory
MappingCharFilterFactory
PersianCharFilterFactory

 Note that ISOLatin1AccentFilterFactory is NOT . You should be using ASCIIFoldingFilterFactory instead as Solr3.6 MultiTermAware
ISOLatin1AccentFilterFactory is deprecated.

 Here are some additional classes that implement ==Solr4.0 MultiTermAwareComponent

ASCIIFoldingFilterFactory
ArabicNormalizationFilterFactory
CJKWidthFilterFactory
CollationKeyFilterFactory
ElisionFilterFactory
GermanNormalizationFilterFactory
GreekLowerCaseFilterFactory
HindiNormalizationFilterFactory
ICUCollationKeyFilterFactory
ICUFoldingFilterFactory
ICUNormalizer2FilterFactory
ICUTransformFilterFactory
IndicNormalizationFilterFactory
IrishLowerCaseFilterFactory
JapaneseIterationMarkCharFilterFactory
LowerCaseFilterFactory
MappingCharFilterFactory
PersianCharFilterFactory
PersianNormalizationFilterFactory
TurkishLowerCaseFilterFactory

Here's a longer blog on this subject Blog Post

 :TODO:
There are tantalizing possibilities for other factories that could be made multiterm-aware, but they are beyond the scope of this initial implementation. See
SOLR-2921.

#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/SOLR/Solr3.6
#
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
http://www.lucidimagination.com/blog/2011/11/29/whats-with-lowercasing-wildcard-multiterm-queries-in-solr/

	MultitermQueryAnalysis

