
1.
a.

2.

3.

SolrLogging

Solr's Logging Mechanism
Solr 4.3 and above

What changed
Why did it change?
A note about SLF4J intercept jars
Using the example logging setup in containers other than Jetty
Switching from Log4J back to JUL (java.util.logging)

Solr 1.4 to 4.2.1
Solr 1.0 to 1.3

Customizing Logging
With Example Jetty Instance
Using log4j with Solr from source, 4.2.1 or earlier
Using Logback with the Solr 3.5 binary distribution

SolrJ and Logging Jars

Solr's Logging Mechanism
Starting with Solr 1.4, the Solr Code base compiles against the API.SLF4J

The Solr Admin console has a . This is a transient setting good for doing diagnostic work, but does not persist screen for changing the logging level globally
after restart.

Solr 4.3 and above

What changed

These versions do not include any logging jars in the WAR file. They must be provided separately. The Solr example for these versions includes jars (in
the jetty lib/ext directory) that set up SLF4J with a binding to the Apache log4j library.

Why did it change?

The logging setup was changed for increased flexibility. With older versions, changing your logging mechanism required either building a special target
from the source code or doing surgery on the WAR file. Now anyone can change to another logging mechanism or upgrade to newer component versions
simply by changing jar files.

A note about SLF4J intercept jars

Some of the third-party software components in Solr do not use the SLF4J library for their logging, they use one of the other logging frameworks directly.
SLF4J includes various 'intercept' jars that grab the output of these direct calls and send them through SLF4J so that all your logs end up handled by the
same configuration. The logging frameworks that must be dealt with are java.util.logging (JUL), java.commons.logging (JCL), and log4j.

The default SLF4J logging destination for the 4.3 example is log4j, so the example does not need to intercept calls for that framework. They will be
handled by the real log4j jar. It only needs to intercept JUL and JCL, as described above. This is why the jul-to-slf4j and jcl-over-slf4j jars are included in
the 4.3 example. If you change your logging framework from log4j to JUL, then you must remove the intercept jar for JUL and add the intercept jar for log4j,
which is named log4j-over-slf4j. If you use an entirely different logging mechanism like logback, then you must have intercepts for all three - JUL, JCL, and
log4j.

Using the example logging setup in containers other than Jetty

To get the same logging setup in another container (Tomcat for example) as with the example Jetty server, you need to do the following

Copy the jars from into your container's main lib directory. These jars will set up SLF4J and log4j.solr/example/lib/ext
Exactly where this lib directory lives is highly variable. For a Debian or Ubuntu server using the Tomcat package available from the OS
vendor, this is likely to be or ./usr/share/tomcat6/lib /usr/share/tomcat7/lib

Copy the logging config from into a location on the classpath. Usually you can use the same solr/example/resources/log4j.properties
location as the jar files above. Edit the configuration file for your preferred log destination.
Optionally, if you did not place on the classpath, set the "log4j.properties" system property. Examples for this:log4j.properties

Linux/UNIX: -Dlog4j.configuration=file:///path/to/log4j.properties
Windows: -Dlog4j.configuration=file:///c:/solr/resources/log4j.properties

If the system can not find the jars for logging, you may get an error which prevents Solr from deploying. For instance in Tomcat 6, it might look like this:

http://www.slf4j.org
http://localhost:8983/solr/admin/logging.jsp
file:///path/to/log4j.properties
file:///c:/solr/resources/log4j.properties

1.

INFO: Deploying web application archive solr.war
May 29, 2013 3:59:40 PM org.apache.catalina.core.StandardContext start
SEVERE: Error filterStart
May 29, 2013 3:59:40 PM org.apache.catalina.core.StandardContext start
SEVERE: Context [/solr] startup failed due to previous errors

If the system cannot find your logging configuration, you may get errors like this:

log4j:WARN No appenders could be found for logger (org.apache.solr.servlet.SolrDispatchFilter).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

It might help to start the server with to see more details.-Dlog4j.debug=true

Switching from Log4J back to JUL (java.util.logging)

The example logging setup takes over the configuration of Solr logging, which prevents the container from controlling where logs go. Users of containers
other than the included Jetty (Tomcat in particular) may be accustomed to doing the logging configuration in the container. If you want to switch back to
java.util.logging so this is once again possible, here's what to do. These steps apply to the example/lib/ext directory in the Solr example, or to your
container's lib directory as mentioned in the previous section. These steps also assume that the slf4j version is 1.6.6, which comes with . Newer Solr4.3
versions may use a different slf4j version. As of May 2013, you can use a newer SLF4J version with no trouble, but be aware that all slf4j components in
your classpath must be the same version.

Download slf4j version 1.6.6 (the version used in Solr4.3.x). 2. Unpack the slf4j archive. 3. Delete these http://www.slf4j.org/dist/slf4j-1.6.6.zip
JARs from your lib folder: slf4j-log4j12-1.6.6.jar, jul-to-slf4j-1.6.6.jar, log4j-1.2.16.jar 4. Add these JARs to your lib folder (from slf4j zip): slf4j-jdk14-
1.6.6.jar, log4j-over-slf4j-1.6.6.jar 5. Use your old logging.properties

Solr 1.4 to 4.2.1

These versions include SLF4J jars in the WAR File that bind SLF4J to JDK standard logging (JUL, the java.util.logging classes). An overview of how JUL
can be configured at the JVM level can be found here:

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

Many servlet containers also provide alternate log configuration options in their configuration files. You should consult your servlet container
documentation to see what options are available.

Users who want an alternate logging implementation (log4j, logback etc) will need to repackage the .war file to remove the existing SLF4J jar files and
replace them with the . You can do this by extracting and repacking the .war file, or by building the war file from source without the jar files.correct jar files

 From there is a build target which will automatically package the WAR file with only the slf4j-api JAR and no Solr3.6 ant dist-war-excl-slf4j
bindings. Using this war file you can place your slf4j-XXX.jar binding file of choice in your servlet container external lib folder. Note that the slf4j jar(s) that
you add must match the version number of the slf4j-api jar file that is contained within the war. For Solr 3.6, that version is 1.6.1. For Solr 4.0, it is 1.6.4.

 From there are two build targets related to choosing your own slf4j binding. These are and Solr4.1 ant dist-excl-slf4j ant dist-war-excl-
. The first target builds the usual dist files in addition to the WAR file, the second just builds the WAR file. These build targets will package the WAR slf4j

without any slf4j jars at all, so you must include all relevant slf4j jars in your container external lib directory. These build targets were removed from Solr4.3
and later.

Here are the slf4j jars that are in the WAR file when you build it without one of the special targets:

slf4j-api-1.6.1.jar
slf4j-jdk14-1.6.1.jar
jcl-over-slf4j-1.6.1.jar
log4j-over-slf4j-1.6.1.jar

The first file is the primary slf4j library. The second is the slf4j binding - in this case . Some of Solr's dependent components use other logging methods - jcl
and log4j. The remaining jar files above intercept calls to these other logging methods and inject them into slf4j.

When you change the slf4j binding, you must include the primary library (the -api jar), the binding for the logging method that you wish to use, the jar(s) for
that logging method, and relevant "-over-slf4j" jars. Note that if you choose either jcl or log4j for your binding, you must leave out the matching "-over-slf4j"
jar.

More Info: http://www.slf4j.org/

Solr 1.0 to 1.3

These versions use JDK standard logging directly, not through SLF4J.

https://cwiki.apache.org/confluence/display/SOLR/Solr4.3
http://www.slf4j.org/dist/slf4j-1.6.6.zip
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://www.slf4j.org/manual.html
https://cwiki.apache.org/confluence/display/SOLR/Solr3.6
https://cwiki.apache.org/confluence/display/SOLR/Solr4.1
https://cwiki.apache.org/confluence/display/SOLR/Solr4.3
http://www.slf4j.org/

1.

Customizing Logging

With Example Jetty Instance

If you're using the example from Solr 4.3.0 and later, you can simply edit the log4j.properties file in the resources directory to customize the logging. There
is a lot of information on the Internet regarding how to configure log4j, including the . The included config file logs to a file as well as the introduction
console.

Earlier versions do not come with a logging config file. See for an example of how you can configure logging with 4.2.1 and LoggingInDefaultJettySetup
earlier.

Using log4j with Solr from source, 4.2.1 or earlier

Prior to], using a different SLF4J binding (such as log4j) meant either repackaging the war file or building it yourself from source. To build it nightly version
yourself, you need to obtain a [or . Once it's downloaded, extract it, cd to the solr directory in the extracted directory, then NightlyBuilds get it from svn
compile it using or depending on the version.ant dist-war-excl-slf4j and dist-excl-slf4j

Here are the jars you will need to put in your container external lib folder, assuming that you get the 1.7 version of slf4j. The last one comes from the log4j
website, not slf4j:

slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
jcl-over-slf4j-1.7.5.jar
log4j-1.2.17.jar

http://www.slf4j.org/download.html http://logging.apache.org/log4j/1.2/

Note that log4j must be configured before it will work. One way to do this is to pass an argument like the following to java:

-Dlog4j.configuration=file:etc/log4j.properties

http://logging.apache.org/log4j/1.2/manual.html#defaultInit

Sample log4j.properties file:

Logging level

log4j.rootLogger=WARN, file

#- size rotation with log cleanup.

log4j.appender.file=org.apache.log4j.RollingFileAppender

log4j.appender.file.MaxFileSize=4MB

log4j.appender.file.MaxBackupIndex=9

#- File to log to and log format

log4j.appender.file.File=logs/solr.log

log4j.appender.file.layout=org.apache.log4j.PatternLayout

log4j.appender.file.layout.ConversionPattern=%-5p - %d{yyyy-MM-dd HH:mm:ss.SSS}; %C; %m\n

Using Logback with the Solr 3.5 binary distribution

Here are some details for implementing logback (). As you may know, Logback was created by the original author of Log4j. It has http://logback.qos.ch/
several enhancements including Filters and Custom Appenders.

Get Solr 3.5 and extract the tar/zip file on your system. http://www.apache.org/dyn/closer.cgi/lucene/solr/3.5.0

Note: is your top level directory for Solr.$ORIG

http://logging.apache.org/log4j/1.2/manual.html
https://cwiki.apache.org/confluence/display/SOLR/LoggingInDefaultJettySetup
https://cwiki.apache.org/confluence/display/SOLR/Solr4.3
https://cwiki.apache.org/confluence/display/SOLR/NightlyBuilds
https://cwiki.apache.org/confluence/display/SOLR/HowToContribute#HowToContribute-Getting_the_source_code
http://www.slf4j.org/download.html
http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/manual.html#defaultInit
http://logback.qos.ch/
http://www.apache.org/dyn/closer.cgi/lucene/solr/3.5.0

1.

cd $ORIG

tar xzvf apache-solr-3.5.0.tgz

2. Copy the solr.war file to a new location

mkdir -p /tmp/solr

cd ./example/webapps

cp solr.war /tmp/solr

cd /tmp/solr

jar xvf solr.war

rm -f solr.war

3. Remove the slf4j-jdk14-1.6.1.jar file

cd /tmp/solr

rm -f ./WEB-INF/lib/slf4j-jdk14-1.6.1.jar

4. Copy logback classic files

Get the file: http://logback.qos.ch/dist/logback-1.0.1.tar.gz

tar xzvf logback-1.0.1.tar.gz

cd logback-1.0.1

cp logback-classic-1.0.1.jar /tmp/solr/WEB-INF/lib

cp logback-core-1.0.1.jar /tmp/solr/WEB-INF/lib

Note: If you wanted to upgrade SLF4J from 1.6.1 to 1.6.4 you would do the following...

Get the SLF4J from http://www.slf4j.org/dist/slf4j-1.6.4.tar.gz
b. Extract the tar into a temporary directory
c. delete the old versions:

rm /tmp/solr/WEB-INF/lib/jcl-over-slf4j-1.6.1.jar

rm /tmp/solr/WEB-INF/lib/log4j-over-slf4j-1.6.1.jar

rm /tmp/solr/WEB-INF/lib/slf4j-api-1.6.1.jar

d. Copy the new ones

cp jcl-over-slf4j-1.6.4.jar /tmp/solr/WEB-INF/lib

cp log4j-over-slf4j-1.6.4.jar /tmp/solr/WEB-INF/lib

cp slf4j-api-1.6.4.jar /tmp/solr/WEB-INF/lib

5. Rebuild the war

http://logback.qos.ch/dist/logback-1.0.1.tar.gz
http://www.slf4j.org/dist/slf4j-1.6.4.tar.gz

cd /tmp/solr

jar cvf solr.war *

6. Copy the war back to your example/webapps directory

cp solr.war $ORIG/apache-solr-3.5.0/example/webapps

7. Create resources/logback.xml file

cd $ORIG/apache-solr-3.5.0/example

mkdir resources

copy logback.xml into this directory.

8. Restart Solr 3.5

Example logback.xml.

<configuration debug="true">

 <appender name="FILE" class="ch.qos.logback.core.FileAppender">

 <file>/var/log/solr.log</file>

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern>

 </encoder>

 </appender>

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern>

 </encoder>

 </appender>

 <logger name="org.apache.solr.handler.dataimport.DocBuilder.level" level="SEVERE" additivity="false">

 <appender-ref ref="FILE" />

 </logger>

 <logger name="org.apache.solr.handler.dataimport.ThreadedEntityProcessorWrapper.level" level="SEVERE"
additivity="false">

 <appender-ref ref="FILE" />

 </logger>

 <logger name="org.apache.solr.core.SolrCore" level="INFO" additivity="false">

 <appender-ref ref="FILE" />

 </logger>

 <logger name="org.apache.solr" level="INFO" additivity="false">

 <appender-ref ref="FILE" />

 </logger>

 <root level="OFF">

 <appender-ref ref="STDOUT" />

 </root>

</configuration>

SolrJ and Logging Jars
SolrJ also requires additional jars for logging, just like Solr does. These jars are not included in dist/solrj-lib along with the rest of SolrJ's dependencies.
The reason is similar to the situation with Solr – the Solr project does not dictate what logging framework the user must use. By choosing which logging
jars to include, you can make the decision about logging framework yourself.

If you just want to get SolrJ working quickly, you can copy the jars from lib/ext, the log4j.properties file from resources, and the SolrJ dependencies from
dist/solrj-lib into your project's classpath. SolrJ will have all the dependencies that it needs.

	SolrLogging

