
TextProfileSignature
TextProfileSignature calculates a fuzzy hash of textual fields for , and may be incorporated using a Deduplication SignatureUpdateProcessorFactory
definition including the following parameters:

Name Type Description Default
value

 minTokenLen int The minimum token length to consider 2

quantRate float When multiplied by the maximum token frequency, this determines count
quantization

.01

The signature calculation proceeds as follows:

Tokenization and normalization

Tokens are contiguous alphanumeric characters
Normalized to lowercase
Discarded if shorter than minTokenLen

Tokens are then counted, tracking the frequency of the most frequent token.maxFreq

Count quantization

A value is calculated as follows:quant

 1 if <= 1maxFreq

quant :
=

2 if round() < maxFreq * quantRate
2

 round(maxFreq * quantRate
)

otherwise

Token frequencies are then rounded down to the nearest multiple of , and any token occurring less than times is discarded.quant quant

Hashing

The set of frequencies is transformed to a string as a space-delimited sequence of tokens and their frequencies, in descending frequency order. This is
then MD5-hashed.

See also TextProfileSignature's javadoc

Implications and limitations

Though this matches two texts approximately, it is still based on exactly matching a single hash. It may fail to match documents that differ by exactly one
word, if that word's frequency changes from to .k * quant - 1 k * quant

Words appearing once are ignored unless the text consists only of words appearing once. Hence, "the cat sat on a mat" will hash distinctly to "the cat sat
on the mat".

For the default (0.01), quant will exceed 2 only if the most frequent word occurs times.quantRate maxFreq >= 251

These properties all suggest that is brittle for short texts.TextProfileSignature

TextProfileSignature operates on raw text, without the filtering provided by Analyzers, and hence will fail to ignore HTML, normalize for diacritics, word stem
/semantics, or incorporate the relative importance of different tokens, etc. It also considers only the bag of words, ignoring any word order.

Configuration

solrconfig.xml

Example settings:

https://cwiki.apache.org/confluence/display/SOLR/Deduplication
#
http://lucene.apache.org/solr/api-4_0_0-BETA/org/apache/solr/update/processor/TextProfileSignature.html

 <!-- An example dedup update processor that creates the "id" field on the fly
 based on the hash code of some other fields. This example has overwriteDupes
 set to false since we are using the id field as the signatureField and Solr
 will maintain uniqueness based on that anyway. -->
 <updateRequestProcessorChain name="dedupe">
 <processor class="org.apache.solr.update.processor.SignatureUpdateProcessorFactory">
 <bool name="enabled">true</bool>
 <bool name="overwriteDupes">false</bool>
 <str name="signatureField">id</str>
 <str name="fields">name,features,cat</str>
 <str name="signatureClass">org.apache.solr.update.processor.TextProfileSignature</str>
 <str name="quantRate">.2</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
 </updateRequestProcessorChain>

	TextProfileSignature

