
UpdateXmlMessages
XML Messages for Updating a Solr Index
Solr accepts POSTed XML messages that Add/Replace, Commit, Delete, and Delete by query, using the url (there is also a interface). Here /update CSV
is the XML syntax that Solr expects to see:

XML Messages for Updating a Solr Index
The Update Schema

add/replace documents
Optional attributes for "add"
Optional attributes on "doc"
Optional attributes for "field"
Examples of adding docs with various optional attributes

"commit" and "optimize"
Optional attributes for "commit" and "optimize"
Optional attributes for "commit"
Optional attributes for "optimize"
Example of "commit" and "optimize" with optional attributes

Passing commit and commitWithin parameters as part of the URL
"delete" documents by ID and by Query

Optional attributes for "delete"
"rollback"
"prepareCommit"
Updating a Data Record via curl
Updating via GET
Add and delete in a single batch

The Update Schema

(Not to be confused with .)schema.xml

add/replace documents

Simple Example:

<add>
 <doc>
 <field name="employeeId">05991</field>
 <field name="office">Bridgewater</field>
 <field name="skills">Perl</field>
 <field name="skills">Java</field>
 </doc>
 [<doc> ... </doc>[<doc> ... </doc>]]
</add>

Git contains many .complex examples of %3Cadd%3E document messages

Note: multiple documents may be specified in a single command.<add>

Optional attributes for "add"

overwrite = "true" | "false" — default is "true", meaning newer documents will replace previously added documents with the same
uniqueKey.
commitWithin = "(milliseconds)" if the "commitWithin" attribute is present, the document will be added within that time. . See Solr1.4 C

 ommitWithin
(removed in - use "overwrite") — default is "false"Solr4.0 allowDups = "true" | "false"
(removed in - use "overwrite") — default is negation of allowDupsSolr4.0 overwritePending = "true" | "false"
(removed in - use "overwrite") — default is negation of allowDups Solr4.0 overwriteCommitted = "true"|"false"

Optional attributes on "doc"

boost = <float> — default is 1.0
This is a convinience mechanism equivilent to specifying a attribute on each of the individual fields that support norms (see boost
below)

Optional attributes for "field"

update = "add" | "set" | "inc" — for atomic updating and adding of fields Solr4.0
boost = <float> — default is 1.0 (See)SolrRelevancyFAQ

https://cwiki.apache.org/confluence/display/SOLR/UpdateCSV
https://cwiki.apache.org/confluence/display/SOLR/SchemaXml
https://git-wip-us.apache.org/repos/asf?p=lucene-solr.git;a=tree;f=solr/example/exampledocs
https://cwiki.apache.org/confluence/display/SOLR/Solr1.4
https://cwiki.apache.org/confluence/display/SOLR/CommitWithin
https://cwiki.apache.org/confluence/display/SOLR/CommitWithin
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
#
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/SolrRelevancyFAQ#SolrRelevancyFAQ-index-time_boosts

NOTE: make sure norms are enabled (omitNorms="false" in the schema.xml) for any fields where the index-time boost should be stored.

Examples of adding docs with various optional attributes

Example of "add" with optional attribute:boost

<add>
 <doc boost="2.5">
 <field name="employeeId">05991</field>
 <field name="office" boost="2.0">Bridgewater</field>
 </doc>
</add>

Example of "add" with optional attribute:update

<add>
 <doc>
 <field name="employeeId">05991</field>
 <field name="office" update="set">Walla Walla</field>
 <field name="skills" update="add">Python</field>
 </doc>
</add>

Example of "add" with optional attribute to set multiple values on a multi-valued field:update

<add>
 <doc>
 <field name="employeeId">05991</field>
 <field name="skills" update="set">Python</field>
 <field name="skills" update="set">Java</field>
 <field name="skills" update="set">Jython</field>
 </doc>
</add>

Example of "add" with optional attribute to set a field to null (i.e. delete a field):update

<add>
 <doc>
 <field name="employeeId">05991</field>
 <field name="skills" update="set" null="true" />
 </doc>
</add>

"commit" and "optimize"

A commit operation makes index changes visible to new search requests. A also calls fsync on the index files to ensure they have been hard commit
flushed to stable storage and no data loss will result from a power failure.

A is much faster since it only makes index changes visible and does not fsync index files or write a new index descriptor. If the JVM crashes soft commit
or there is a loss of power, changes that occurred after the last will be lost. Search collections that have near-real-time requirements (that hard commit
want index changes to be quickly visible to searches) will want to soft commit often but hard commit less frequently.

An is like a except that it forces all of the index segments to be merged into a single segment first. Depending on the use cases, optimize hard commit
this operation should be performed infrequently (like nightly), if at all, since it is very expensive and involves reading and re-writing the index. entire
Segments are normally merged over time anyway (as determined by the merge policy), and optimize just forces these merges to occur immediately.

Example:

<commit/>
<optimize/>

Optional attributes for "commit" and "optimize"

waitFlush = "true" | "false" — default is true — block until index changes are flushed to disk At least in Solr 1.4 and later Solr1.4
(perhaps earlier as well), this command has no affect. In it will be removed.Solr4.0
waitSearcher = "true" | "false" — default is true — block until a new searcher is opened and registered as the main query searcher,
making the changes visible.
softCommit = "true" | "false" — default is false — perform a soft commit - this will refresh the 'view' of the index in a more performant
manner, but without "on-disk" guarantees. Solr4.0

Optional attributes for "commit"

expungeDeletes = "true" | "false" — default is false — merge segments with deletes away. Solr1.4

Optional attributes for "optimize"

maxSegments = N — default is '1' — optimizes down to at most this number of segments Solr1.3

Example of "commit" and "optimize" with optional attributes

<commit waitSearcher="false"/>
<commit waitSearcher="false" expungeDeletes="true"/>
<optimize waitSearcher="false"/>

Passing commit and commitWithin parameters as part of the URL

Update handlers can also get commit related parameters as part of the update URL. This example adds a small test document and causes an explicit
commit to happen immediately after:

curl http://localhost:8983/solr/update?commit=true -H "Content-Type: text/xml" --data-binary '<add><doc><field
name="id">testdoc</field></doc></add>'

This example will cause the index to be optimized down to at most 10 segments, but won't wait around until it's done (waitFlush=false):

curl 'http://localhost:8983/solr/update?optimize=true&maxSegments=10&waitFlush=false'

 This example adds a small test document with a instruction which tells Solr to make sure the document is committed no later Solr3.4 CommitWithin
than 10 seconds later (this method is generally preferred over explicit commits):

curl http://localhost:8983/solr/update?commitWithin=10000 -H "Content-Type: text/xml" --data-binary
'<add><doc><field name="id">testdoc</field></doc></add>'

"delete" documents by ID and by Query

Delete by id deletes the document with the specified ID. (ID here means the value of the uniqueKey field declared in the schema (in these examples,
employeeId).

Delete by query deletes all the documents that match the specified query.

Example:

<delete><id>05991</id></delete>
<delete><query>office:Bridgewater</query></delete>

Note: The "delete by query" uses the Lucene query parser by default, so if you're trying to understand the results of delete by query, you might submit a
URL like this:

?q=stuff nonsense&debugQuery=on

You should see something in the debug output like the following, along with the parsed query. Examining the
parsed query may shed some light on any surprising results.

<str name="QParser">LuceneQParser</str>

https://cwiki.apache.org/confluence/display/SOLR/Solr1.4
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/Solr1.4
https://cwiki.apache.org/confluence/display/SOLR/Solr1.3
https://cwiki.apache.org/confluence/display/SOLR/Solr3.4
https://cwiki.apache.org/confluence/display/SOLR/CommitWithin

In Solr 1.2, delete query is less efficient than delete by id, because Solr has to do much of the commit logic each time it receives a delete by query much
request. In Solr 1.3, however, most of the overhead will have been removed.

 Both delete by id and delete by query can be specified at the same time.Solr1.4

Example:

<delete>
 <id>05991</id><id>06000</id>
 <query>office:Bridgewater</query>
 <query>office:Osaka</query>
</delete>

Optional attributes for "delete"

(deprecated) — default is "true"fromPending = "true" | "false"
(deprecated) — default is "true" fromCommitted = "true" | "false"

"rollback"

 Expert:Solr1.4

Example:

<rollback/>

The rollback command rollbacks all add/deletes made to the index since the last commit. It neither calls any event listeners nor creates a new searcher.
This is an expert-level API that should only be used if the application is taking complete responsibility for update concurrency, replication, and sharding.

"prepareCommit"

 Expert:Solr4.0

The prepareCommit command is an expert-level API that calls Lucene's IndexWriter.prepareCommit().

Example:

curl 'http://localhost:8983/solr/update?prepareCommit=true'

Updating a Data Record via curl

You can use curl to send any of the above commands. For example:

curl http://<hostname>:<port>/solr/update -H "Content-Type: text/xml" --data-binary '<add>
<doc boost="2.5"> <field name="employeeId">05991</field>
<field name="office" boost="2.0">Bridgewater</field> </doc> </add>'

curl http://<hostname>:<port>/solr/update -H "Content-Type: text/xml" --data-binary '<commit waitFlush="false"
waitSearcher="false"/>'

Until a commit has been issued, you will not see any of the data in searches either on the master or the slave. After a commit has been issued, you will see
the results on the master, then after a snapshot has been pulled by the slave, you will see it there also.

Updating via GET

Short update requests can also be sent using a GET request (needs to be url-encoded) like:

https://cwiki.apache.org/confluence/display/SOLR/Solr1.4
https://cwiki.apache.org/confluence/display/SOLR/Solr1.4
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0

(delete specific doc)
http://localhost:8983/solr/update?stream.body=%3Cdelete%3E%3Cquery%3Eoffice:Bridgewater%3C/query%3E%3C/delete%3E

(delete all docs)
http://localhost:8983/solr/update?stream.body=%3Cdelete%3E%3Cquery%3E*:*%3C/query%3E%3C/delete%3E

(commit)
http://localhost:8983/solr/update?stream.body=%3Ccommit/%3E

Add and delete in a single batch

Mixing add and delete elements in a single batch will throw an exception ():Illegal to have multiple roots (start tag in epilog?) SOLR-2277

curl http://127.0.0.1:8983/solr/update/?commit=true -H "Content-Type: text/xml" --data-binary '<add><doc><field
name="id">17</field></doc></add><delete><id>1234</id></delete>';

Instead, the add and delete elements must be enclosed in within an update element:

curl http://127.0.0.1:8983/solr/update/?commit=true -H "Content-Type: text/xml" --data-binary
'<update><add><doc><field name="id">17</field></doc></add><delete><id>1234</id></delete></update>';

https://issues.apache.org/jira/browse/SOLR-2277

	UpdateXmlMessages

