
BuildingHadoopFromSVN
Building Hadoop 1.x
This documents some of the tricks needed to make building/running Hadoop 1.x easier

Set Ant up

In , set up any proxy you need. For exampleANT_OPTS

export ANT_OPTS=-Dhttp.proxyHost=web-proxy -Dhttp.proxyPort=8088 -Dhttps.proxyHost=web-proxy -Dhttps.
proxyPort=8088

set to if you want the "big project logger", which is handy ANT_ARGS -logger org.apache.tools.ant.listener.BigProjectLogger
when you build across different modules.

Check out the Hadoop modules

Create a root directory, ~/Hadoop

Check out from SVN Avro (just for the source when debugging), and the Hadoop modules

svn co https://svn.apache.org/repos/asf/hadoop/avro/trunk avro
svn co https://svn.apache.org/repos/asf/hadoop/common/trunk hadoop-common
svn co https://svn.apache.org/repos/asf/hadoop/hdfs/trunk hadoop-hdfs
svn co https://svn.apache.org/repos/asf/hadoop/mapreduce/trunk hadoop-mapreduce

patch the files of hadoop* to make the project names all lower case otherwise they get published with the wrong name in Ivybuild.xml

sharing build.properties

The build files all load in { } , so you can set settings there for every project.${user.home}/build.properties

They also load in { }${basedir}/build.properties

You can share a filebuild.properties

1. Make the file: touch ~/Hadoop/build.properties
1. Symlink it

 ln -s ~/Hadoop/build.properties ~/Hadoop/hadoop-common
 ln -s ~/Hadoop/build.properties ~/Hadoop/hadoop-hdfs
 ln -s ~/Hadoop/build.properties ~/Hadoop/hadoop-mapreduce

Now changes propagate around automatically.

Create a new Hadoop version

In :build.properties

version=0.21.0-alpha-15
hadoop.version=${version}
hadoop-core.version=${version}
hadoop-mr.version=0.21.0-dev

Why the different versions? I check versions in to SVN for hudson et al, bumping up my version count every release. For stuff I build locally, we use a
version counter one notch higher. This ensures that local builds get the latest versions, while the other ones get releases.

Now, we are going to have fun by symlinking from to the specific artifacts we create. This stops us having to care about publishing things. Any local build is
automatically picked up -until that version number is changed.

Create the core JARs

1. Change to : hadoop-common cd ~/Hadoop/hadoop-common
1. ant clean jar jar-test ivy-publish-local
1. If you have made any changes to the source, run until the tests pass.ant test
1. run -expect to see two Jarsls -l build/*.jar

 -rw-r--r-- 1 hadoop users 1059526 2009-08-18 16:23 build/hadoop-common-0.21.0-alpha-15.jar
 -rw-r--r-- 1 hadoop users 408716 2009-08-18 16:23 build/hadoop-common-test-0.21.0-alpha-15.jar

1. link everything up:

 ln -s ~/Hadoop/hadoop-common/build/hadoop-common-0.21.0-alpha-15.jar ../hadoop-hdfs/lib
 ln -s ~/Hadoop/hadoop-common/build/hadoop-common-test-0.21.0-alpha-15.jar ../hadoop-hdfs/lib
 ln -s ~/Hadoop/hadoop-common/build/hadoop-common-0.21.0-alpha-15.jar ../hadoop-mapreduce/lib
 ln -s ~/Hadoop/hadoop-common/build/hadoop-common-test-0.21.0-alpha-15.jar ../hadoop-mapreduce/lib

This has now propagated the JAR to the different directories, and put it in the Ivy repository for other programs to pick up.

The JAR is not copied, just linked to the version. This meanshadoop-common/build/

Whenever a change is made to the common project, and it is rebuilt, the other projects get the change immediately.
If you change the version number in common, all the links break
If you do an in common/ the other projects will not build until you have gone again. You could change the links ant clean ant jar jar-test
to point to the ivy artifacts under . This would give access to the cached versions, and is a half-way ~/.ivy2/local/org.apache.hadoop/
house between full Ivy integration for Hadoop JAR retrieval, and integration of local builds via symbolic links. But it does require to ivy-publish
work everywhere.

Build the HDFS JARS

1. Change to : hadoop-hdfs cd ~/Hadoop/hadoop-hdfs
1. ant clean jar jar-test ivy-publish-local
1. If you have made any changes to the source, run until the tests pass. It's OK at this point for the tests to fail.ant test run-test-hdfs-with-mr
1. do an to check the JARs are there and versioned rightls -l build
1. Symlink the hdfs JARS into mapreduce

 ln -s ~/Hadoop/hadoop-hdfs/build/hadoop-hdfs-0.21.0-alpha-15.jar ../hadoop-mapreduce/lib
 ln -s ~/Hadoop/hadoop-hdfs/build/hadoop-hdfs-test-0.21.0-alpha-15.jar ../hadoop-mapreduce/lib

Build the JARSMapReduce

1. Change to : hadoop-mapreduce cd ~/Hadoop/hadoop-mapreduce
1. ant clean jar jar-test
1. Symlink these jars back into hadoop-hdfs (ooh, a loop!)

 ln -s ~/Hadoop/hadoop-mapreduce/build/hadoop-mapred-0.21.0-alpha-15.jar ../hadoop-hdfs/lib
 ln -s ~/Hadoop/hadoop-mapreduce/build/hadoop-mapred-test-0.21.0-alpha-15.jar ../hadoop-hdfs/lib

1. Patch build.properties to pick up the new version

hadoop-mr.version=${version}

1. Run the mapreduce tests
1. Go back to hadoop-hdfs and run the tests and make sure that the tests under passrun-test-hdfs-with-mr

https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce

	BuildingHadoopFromSVN

