
1.

2.

HCFS
Filesystem Compatibility with Apache Hadoop
See this link for Community Progress and Participation on these topics

Apache Hadoop is built on a distributed filesystem, HDFS, , capable of storing tens of Petabytes of data. This filesystem is Hadoop Distributed File System
designed to work with Apache Hadoop from the ground up, with location aware block placement, integration with the Hadoop tools and both explicit and
implicit testing.

Apache Hadoop also works with other filesystems, the platform specific "local" filesystem, such as Amazon S3 and Azure storage, as well as Blobstores
alternative distributed filesystems.

All such filesystems (including HDFS) must link up to Hadoop in two ways.

The filesystem looks like a "native" filesystem, and is accessed as a local FS, perhaps with some filesystem-specific means of telling the MapRedu
 layer which is closest to the data.ce TaskTracker

The filesystem provides an implementation of the class (and in Hadoop v2, in implementation of the org.apache.hadoop.fs.FileSystem Fi
 class} leContext

Implementing the class ensures that there is an API for applications such as , Apache HBase, Apache Giraph and others can FileSystem MapReduce
use -including third-party applications as well as code running in a job that wishes to read or write data.MapReduce

The selection of which filesystem to use comes from the URI scheme used to refer to it -the prefix on any file path means that it refers to an HDFS hdfs:
filesystem; to the local filesystem, to Amazon S3, FTP, , ...etc.file: s3: ftp: swift: OpenStackSwift

There are other filesystems that provide explicit integration with Hadoop through the relevant Java JAR files, native binaries and configuration parameters
needed to add a new schema to Hadoop, such as fat32:

All providers of filesystem plugins do their utmost to make their filesystems are compatible with Apache Hadoop. Ambiguities in the Hadoop APIs do not
help here -as a lot of the expectations of Hadoop applications are set not by the API, but the behavior of HDFS itself -which makes it harder FileSystem
to distinguish "bug" from "feature" in the behavior of HDFS.

The Hadoop developers are (as of April 2013), attempting to as well as adding define the Semantics of the Hadoop FileSystem more rigorously better test
. This will ensure that we can keep the filesystem implementations that ship with Hadoop coverage for the filesystem APIs HDFS itself, and those classes

 consistent with each other, and compatible with existing applications.that connect to other filesystems, currently , , , , s3: s3n: file: ftp: webhdfs

This formalisation of the API will also benefit anyone who wishes to to provide a library that lets Hadoop applications work with their -such FileSystem
people have been very constructive in helping define the APIs more rigorously.FileSystem

The list below contains links to information about some of the additional and Object Stores for Apache HadoopFileSystems

Known contributors actively commited to working on HCFS initiative... (Add your organization here) !

HDFS
GlusterFS
OrangeFS
SwiftFS
GridGain

Other known members of the HCFS community:

/* Alphabetical order, no endorsements, please */. */
Windows Azure Blob Storage
CassandraFS
CephFS
CleverSafe Object Store
Google Cloud Storage Connector
Lustre
MapR FileSystem
Quantcast File System
Symtantec Veritas Cluster File System

Even if the filesystem is supported by a library for tight integration with Apache Hadoop, it may behave differently from what Hadoop and applications
expect: this is something to explore with the supplier of the filesystem.

The Apache Software Foundation can make no assertion that a third party filesystem is with Apache Hadoop: these are claims by the vendors compatible
which the Apache Software Foundation do not validate.

What the ASF can do is warn that our own filesystems (currently , and) are not complete replacements for , as BlobStore s3: s3n: swift: hdfs:
operations such as are only emulated through copying then deleting all operations, and so a directory rename is not atomic -a requirement of rename()
POSIX filesystems which some applications (MapReduce) currently depend on.

Similarly the local filesystem behaves different only different operating systems, especially regarding filename case and whether or not you can file:
delete open files. If your intent is to write code that only ever works with the local filesystem, always test on the target platform.

https://wiki.apache.org/hadoop/HCFS/Progress
#
https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce
https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce
https://cwiki.apache.org/confluence/display/HADOOP2/TaskTracker
https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce
https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce
#
https://issues.apache.org/jira/browse/HADOOP-9371
https://issues.apache.org/jira/browse/HADOOP-9258
https://issues.apache.org/jira/browse/HADOOP-9258
#
#
#
https://github.com/apache/hadoop-hdfs
https://forge.gluster.org/hadoop
http://www.omnibond.com/orangefs/docs/v_2_8_8/index.htm#Hadoop_Client.htm
https://github.com/steveloughran/Hadoop-and-Swift-integration/
http://www.gridgain.com/media/in-memory-hdfs-readme.pdf
https://issues.apache.org/jira/browse/HADOOP-9629
http://www.datastax.com/dev/blog/cassandra-file-system-design
https://ceph.com/docs/master/cephfs/hadoop/
http://www.cleversafe.com/news-reviews/cleversafe-press-releases/2012-press-releases/cleversafe-first-to-deliver-breakthrough-capabilities-for-combined-storage-and-massive-computation
https://developers.google.com/hadoop/google-cloud-storage-connector
http://newsroom.intel.com/community/intel_newsroom/blog/2013/06/12/intel-expands-software-portfolio-for-big-data-solutions
http://answers.mapr.com/questions/116/is-mapr-wire-compatible-or-api-compatible-with-hadoop-0202
https://github.com/quantcast/qfs/wiki/Migration-Guide
http://www.symantec.com/enterprise-solution-for-hadoop
#

	HCFS

