
ReleaseProcess
The information on this page is intended for Velocity committers, not as end-user documentation.

(Note - some of the specific instructions this document are out of date now that Velocity has left Jakarta and gone TLP. In particular this applies to details
on the Velocity site).

Building and Releasing the Velocity Engine

The Velocity project currently is built using Apache ant. This is the canonical build and in case of doubt, the results of this build win. While it is possible to
build Velocity using Apache maven, the inherently instable nature of Maven 1.x and the not yet proven reliablity of Maven 2.x make us feel that maven is
not yet 'ready' to be used as primary build tool for Velocity.

Velocity up to and including Version 1.4 uses only Apache ant as its build tool. Starting with Velocity 1.5, we will still build the actual release archives with
ant but nightly builds and especially the web site located at will be built using Apache maven V1. Using Maven buys us a http://velocity.apache.org/
number of interesting reports and metrics during the build process (such as automated Changelogs, metrics, web-formatted test reports and so on).

Apache Maven uses a XML file called and a number of properties files to control its build process.project.xml

Locations and Pathes for Velocity

Purpose File system location (on minotaur) web location

Release location /www/www.apache.org/dist/velocity/engine Mirrored through the Apache mirror system, available
through

http://velocity.apache.org/download.cgi

Maven repository release location /www/www.apache.org/dist/java-repository
/velocity

http://www.apache.org/dist/java-repository/velocity/

Maven repository snapshot
location

/www/cvs.apache.org/repository/velocity http://cvs.apache.org/repository/velocity/

Building the velocity site using maven

maven site:deploy – builds the complete maven site and deploys it to the apache servers.

Due to the fact that deployment happens to the Apache web staging server from which the actual servers (which are velocity.apache.org) mirror the
content every few hours or so, changes are not immediately visible. If you want to check whether the content arrived ok on the apache server, use the
209.237.227.195 trick (which is using the IP address and port 80 as your proxy host. Then access and you get the content http://velocity.apache.org/
directly from minotaur).

Snapshot deployment using Maven

There are two deployment repositories defined in :project.properties

Repository for official releases
maven.repo.apache=scpexe://cvs.apache.org
maven.repo.apache.directory=/www/www.apache.org/dist/java-repository

Repository for alpha, beta, rc releases
maven.repo.snapshot=scpexe://cvs.apache.org
maven.repo.snapshot.directory=/www/cvs.apache.org/repository/velocity

The selection of the repository happens through the parameter. It defaults to the snapshot repository.maven.repo.list

Q: Why are we using 'scpexe' and not 'scp' for deployment?

A: Because for Apache logins, according to infrastructure, we should stick to public/private key authentication to access the distribution servers. In that
case, you would have to give the full path to your private key and also the passphrase on the command line. E.g. like this:

 maven -Dmaven.repo.snapshot.privatekey=/home/henning/.ssh/id_dsa -Dmaven.repo.snapshot.passphrase=verysecret
dist:deploy

Q: Why that? What about or ?ssh-agent pageant

A: You will have to google for that answer quite a while. Here is the short answer: uses an unix domain-socket which cannot be accessed in ssh-agent
pure Java. End of Story.

http://velocity.apache.org/
http://velocity.apache.org/download.cgi
http://www.apache.org/dist/java-repository/velocity/
http://cvs.apache.org/repository/velocity/
http://velocity.apache.org/

Q: scpexe:// does not work for me!

A: You have to add the following properties to your global (on Unix) properties file:~/.build.properties

maven.username= <your apache login>
maven.ssh.args=-o ForwardX11=false

I needed the last line to get scpexe to run on (Fedora) Linux.RedHat

Building and deploying snapshot versions using maven

After setting up your global build properties file as described above, you should be able to run the following commands:

maven jar:deploy – sends a build of the velocity.jar to the snapshot repository
maven dist:deploy – sends a distribution build to the snapshot repository

Please note that due to a design problem in the artifact plugin of maven, the jar or distribution archive and the related POM can have (will have if you have
a slow line) different time stamps. So the POMs are basically useless.

Preparing official releases using Apache Maven

As we currently build official releases with ant, this paragraph is intentionally empty.

Preparing official releases using Apache ant

Before you start

Make sure the file has the most recent updates listed.changes.xml
Run to get the most recent tree for release.svn update
check whether everything has checked in correctly: should be empty.svn status
remove the and directories.bin target
enter the directory build

Building the release

Make sure you are using J2SDK 1.4.2 to build the release. This will allow the jar files to be used with JDK 1.3, 1.4, 1.5, and 1.6.
change the version property in to reflect the version to be released.build.properties
edit the file , changing the attribute of the topmost tag to indicate the most version number to be released.changes.xml version release
check this change in using svn commit
build the release packages using (this is related to but checks for the right version of Java).ant release ant package
enter the directorybin
Generate GPG signatures:

#! /bin/bash
for i in *.tar.gz *.zip *jar; do
 gpg --default-key <your key id here> --armor --output $i.asc --detach-sig $i
done

You should now have sixteen files in that directory: A .jar, a .jar with dependencies, a .tar.gz and a .zip file. For each you must have a .md5, a .sha1 and a .
asc file. If you file count is not correct, please .DO NOT CONTINUE

Uploading the release to apache.org

As personal access to people.apache.org is still possible, we will use this way. This is supposed to change sometime in 2006 (might be changed
to WebDAV) but until then we are lazy.
Copy the sixteen files mentioned above to your personal directory on people.apache.org using secure copy (scp).
log onto people.apache.org
make sure that your umask is 002! If not, please enter umask 002
create the distribution directory: . Make sure that its /www/www.apache.org/dist/velocity/engine/velocity-<new version>
permissions are set to 775!
move the .tar.gz and .zip related files from your personal directory to the distribution directory.
copy the .jar (and md5 related files) to /www/people.apache.org/repo/m1-ibiblio-rsync-repository/velocity/jars
go to the distribution directory.
check the MD5 and SHA1 sums by running the md5 and sha1 programs on the .tar.gz and .zip files. The output must be identical to the contents
of the .md5 and .sha1 files. Upload errors happen more frequently that commonly believed and testing the Please do not skip this step!
checksums is essential in catching these.
verify the GPG signatures, too using gpg --verify.
go to the java distribution directory: /www/people.apache.org/repo/m1-ibiblio-rsync-repository/velocity/jars

#

please repeat the check and verify as with the distribution files

Now that the release is out, please let the mirrors some time to pick up the releases. In the meantime, please do the following preparations to make the
release public.

Tag the release

Tag the release in Subversion. This is a very important step because it makes sure that your release stays the same. Run the following command
from your release tree:

svn copy -m 'Release <released version>' https://svn.apache.org/repos/asf/velocity/engine/trunk https://svn.
apache.org/repos/asf/velocity/engine/tags/ENGINE_<released_version>

(The older tags are a bit in disarray. This will get cleaned up in the future).

Build the site docs

(This section is out of date)

remove the and directories one more time.bin target
As the site is built using maven, do the following preparations:

change the <currentVersion> tag in to the release versionproject.xml
change the <siteDirectory> tag to /www/jakarta.apache.org/velocity/releases/engine/<release version>
change the <connection> and <developerConnection> tags created above. Please make sure to have the http for the connection and the
https for the developer connection right!
change the <url> tag to point to tag above.
add the released version to the <versions> tag (e.g. for the 1.5 release):

<version>
 <name>1.5</name>
 <tag>ENGINE_1.5</tag>
 <id>1.5</id>
</version>

run maven site:deploy
revert your local changes to by running project.xml svn revert project.
Due to the volatile nature of the maven site building process, it is strongly recommended, that you also back up the distribution tree built on the
apache.org web site by generating an archive of the tree located under/releases/engine/<release version>

Post-upload preparations

(This section is out of date)

Change the version in to read <released version + 1>-dev. Check this change in immediately using build.properties svn commit build.
! properties

Build the global Apache download and announcement links

check out the Apache Jakarta site module using

svn checkout https://svn.apache.org/repos/asf/jakarta/site jakarta-site

open the xdoc/downloads/downloads.xml file and look for the id="velocity" project tag. Change the current version to the just released version.
open the news.xml file and add a new release item on top of the most current group (It might be necessary to add a new group). Please read the
comments in the file and act accordingly. (At this point you should also have the announce message ready because you can reuse it here).
rebuild the jakarta site using . If you do this on an UTF-8 based unix system (e.g. Fedora), you must run this command like ant docs CAVEAT:
this: . Else you will nuke all the non-ascii characters in the site. LANG=en_US ant docs PLEASE CHECK THIS TWICE BEFORE THE NEXT

.STEP using svn status
Ideally, this should change only very few files. If you have many more files changed than just the following few, please check twice before doing s

. Even better, please check in only these files anyway.vn commit
news.xml (which you edited)
downloads/downloads.xml (which you edited)
docs/site/downloads/downloads_velocity.html (generated)
docs/index.html (generated)
docs/site/rss.xml (rss feed, generated)
docs/site/news/... (generated)

go to people.apache.org, change to and run to reflect your changes. /www/jakarta.apache.org svn update index.html site

Announcing the release

Announcement mails should be sent to the following addresses:
Apache Announce list: announce at apache.org
Velocity Development list: dev at velocity.apache.org
Velocity User list: velocity-user at velocity.apache.org

Announcements should have your 'apache.org' email addresse as sender because the first two recipients discard everything not coming from an apache.
org address. You should also use the same announcement text (or something closely resembling it) that you put into the news.xml file on the site.

	ReleaseProcess

