ThriftUsagePython

Assuming you're using the definitions in "tutorial.thrift":

Generate the Code

Make sure the thrift compiler is installed somewhere in your PATH. Then generate new style classes (inherit from object, better introspection) for the
tutorial:

thrift -gen py:new style tutorial.thrift
thrift -gen py:new style shared.thrift

To generate old style classes:

thrift -gen py tutorial.thrift
thrift -gen py shared.thrift

This makes a gen- py/ subdirectory for the generated code.

Import the Classes

First make sure you have added the gen-py/ subdirectory to your sys. pat h with:

i nport sys
sys. pat h. append(' gen-py')

Then import the classes:

import tutorial.Calculator
fromtutorial.ttypes inmport *
fromthrift.protocol inport TBinaryProtocol
fromthrift.transport inport TTransport

Create Objects, Using Constants

Make a Work thrift object, and set its 'op’ field to the ENUM Oper at i on. ADD defined intutori al . t hri ft and set two numeric fields to some values.

work = Work()
work. nunl = 7
work. nun2 = 9
wor k. op = Operati on. ADD

Serialize to/from a string

Create a TMenor yBuf f er object to contain the serialized bytes, a TBi nar yPr ot ocol object to perform the serialization, and use the thrift Wor k object's
wr i t e method to produce the serialized bytes.

Then, take the serialized bytes and pass them into a new TMenor yBuf f er , pass that into another TBi nar yPr ot ocol , create a new/empty thrift Wor k
object, and use it's r ead method to deserialize the bytes, setting all the fields.

transportQut = TTransport. TMenoryBuffer ()

protocol Qut = TBi naryProtocol . TBi naryProt ocol (transport Qut)

wor k. write(protocol Qut)

bytes = transportQut.getvalue() # the string 'bytes' can be witten out to disk
to be read in at a different tine

transportln = TTransport. TMenor yBuf f er (byt es)

protocol I n = TBi naryProtocol . TBi naryProt ocol (transportln)
noreWork = Work()

nor eWor k. r ead(prot ocol I n)

	ThriftUsagePython

