
Tutorial
up-to-date version of the Tutorial is available via Subversion repository: http://svn.apache.org/repos/asf/thrift/trunk/tutorial/

#!/usr/local/bin/thrift --gen cpp --gen java --gen py --php --gen rb --gen perl --erl --xsd -r
#
Thrift Tutorial
Mark Slee (mcslee@facebook.com)
#
This file aims to teach you how to use Thrift, in a .thrift file. Neato. The
first thing to notice is that .thrift files support standard shell comments.
This lets you make your thrift file executable and include your Thrift build
step on the top line. And you can place comments like this anywhere you like.
#
Before running this file, you will need to have installed the thrift compiler
into /usr/local/bin.

/**
 * The first thing to know about are types. The available types in Thrift are:
 *
 * bool Boolean, one byte
 * byte Signed byte
 * i16 Signed 16-bit integer
 * i32 Signed 32-bit integer
 * i64 Signed 64-bit integer
 * double 64-bit floating point value
 * string String
 * map<t1,t2> Map from one type to another
 * list<t1> Ordered list of one type
 * set<t1> Set of unique elements of one type
 *
 * Did you also notice that Thrift supports C style comments?
 */

// Just in case you were wondering... yes. We support simple C comments too.

/**
 * Thrift files can reference other Thrift files to include common struct
 * and service definitions. These are found using the current path, or by
 * searching relative to any paths specified with the -I compiler flag.
 *
 * Included objects are accessed using the name of the .thrift file as a
 * prefix. i.e. shared.SharedObject
 */
include "shared.thrift"

/**
 * Thrift files can namespace, package, or prefix their output in various
 * target languages.
 */
namespace cpp tutorial
namespace java tutorial
php_namespace tutorial
namespace perl tutorial
namespace smalltalk.category Thrift.Tutorial

/**
 * Thrift lets you do typedefs to get pretty names for your types. Standard
 * C style here.
 */
typedef i32 MyInteger

/**
 * Thrift also lets you define constants for use across languages. Complex
 * types and structs are specified using JSON notation.
 */
const i32 INT32CONSTANT = 9853
const map<string,string> MAPCONSTANT = {'hello':'world', 'goodnight':'moon'}

/**

http://svn.apache.org/repos/asf/thrift/trunk/tutorial/

 * You can define enums, which are just 32 bit integers. Values are optional
 * and start at 1 if not supplied, C style again.
 * ^ ThriftIDL page says "If no constant value is supplied,
 * the value is either 0 for the first element, or one greater than the
 * preceding value for any subsequent element" so I'm guessing that's a bug.
 * PS: http://enel.ucalgary.ca/People/Norman/enel315_winter1997/enum_types/ states that if values are not
supplied, they start at 0 and not 1.
 */
enum Operation {
 ADD = 1,
 SUBTRACT = 2,
 MULTIPLY = 3,
 DIVIDE = 4
}

/**
 * Structs are the basic complex data structures. They are comprised of fields
 * which each have an integer identifier, a type, a symbolic name, and an
 * optional default value.
 *
 * Fields can be declared "optional", which ensures they will not be included
 * in the serialized output if they aren't set. Note that this requires some
 * manual management in some languages.
 */
struct Work {
 1: i32 num1 = 0,
 2: i32 num2,
 3: Operation op,
 4: optional string comment,
}

/**
 * Structs can also be exceptions, if they are nasty.
 */
exception InvalidOperation {
 1: i32 what,
 2: string why
}

/**
 * Ahh, now onto the cool part, defining a service. Services just need a name
 * and can optionally inherit from another service using the extends keyword.
 */
service Calculator extends shared.SharedService {

 /**
 * A method definition looks like C code. It has a return type, arguments,
 * and optionally a list of exceptions that it may throw. Note that argument
 * lists and exception lists are specified using the exact same syntax as
 * field lists in struct or exception definitions. NOTE: Overloading of
 * methods is not supported; each method requires a unique name.
 */

 void ping(),

 i32 add(1:i32 num1, 2:i32 num2),

 i32 calculate(1:i32 logid, 2:Work w) throws (1:InvalidOperation ouch),

 /**
 * This method has an oneway modifier. That means the client only makes
 * a request and does not listen for any response at all. Oneway methods
 * must be void.
 *
 * The server may execute async invocations of the same client in parallel/
 * out of order.
 */
 oneway void zip(),
}

/**

 * It's possible to declare more than one service per Thrift file.
 */
service CalculatorExtreme extends shared.SharedService {
 void pingExtreme(),
}

/**
 * That just about covers the basics. Take a look in the test/ folder for more
 * detailed examples. After you run this file, your generated code shows up
 * in folders with names gen-<language>. The generated code isn't too scary
 * to look at. It even has pretty indentation.
 */

	Tutorial

